These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 31535755)
21. Deriving the aquatic predicted no-effect concentrations (PNECs) of three chlorophenols for the Taihu Lake, China. Lei BL; Huang SB; Jin XW; Wang Z J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010 Dec; 45(14):1823-31. PubMed ID: 20936560 [TBL] [Abstract][Full Text] [Related]
22. Mean Species Abundance as a Measure of Ecotoxicological Risk. Hoeks S; Huijbregts MAJ; Douziech M; Hendriks AJ; Oldenkamp R Environ Toxicol Chem; 2020 Nov; 39(11):2304-2313. PubMed ID: 32786097 [TBL] [Abstract][Full Text] [Related]
23. Environmental risk assessment of zinc in European freshwaters: a critical appraisal. Van Sprang PA; Verdonck FA; Van Assche F; Regoli L; De Schamphelaere KA Sci Total Environ; 2009 Oct; 407(20):5373-91. PubMed ID: 19631966 [TBL] [Abstract][Full Text] [Related]
24. Methods for estimating no-effect toxicity concentrations in ecotoxicology. Fisher R; Fox DR; Negri AP; van Dam J; Flores F; Koppel D Integr Environ Assess Manag; 2024 Jan; 20(1):279-293. PubMed ID: 37431758 [TBL] [Abstract][Full Text] [Related]
25. Deriving the predicted no effect concentrations of 35 pesticides by the QSAR-SSD method. Huang P; Liu SS; Wang ZJ; Ding TT; Xu YQ Chemosphere; 2022 Jul; 298():134303. PubMed ID: 35288184 [TBL] [Abstract][Full Text] [Related]
26. Species sensitivity distribution for pentachlorophenol to aquatic organisms based on interval ecotoxicological data. Zhao J; Zhang R Ecotoxicol Environ Saf; 2017 Nov; 145():193-199. PubMed ID: 28734222 [TBL] [Abstract][Full Text] [Related]
27. A Novel Approach to Derive the Predicted No-Effect Concentration (PNEC) of Benzophenone-3 (BP-3) Using the Species Sensitivity Distribution (SSD) Method: Suggestion of a New PNEC Value for BP-3. Jung JW; Kang JS; Choi J; Park JW Int J Environ Res Public Health; 2021 Mar; 18(7):. PubMed ID: 33807469 [TBL] [Abstract][Full Text] [Related]
28. MOSAIC_SSD: a new web tool for species sensitivity distribution to include censored data by maximum likelihood. Kon Kam King G; Veber P; Charles S; Delignette-Muller ML Environ Toxicol Chem; 2014 Sep; 33(9):2133-9. PubMed ID: 24863265 [TBL] [Abstract][Full Text] [Related]
29. On the application of loss functions in determining assessment factors for ecological risk. Hickey GL; Craig PS; Hart A Ecotoxicol Environ Saf; 2009 Feb; 72(2):293-300. PubMed ID: 18691758 [TBL] [Abstract][Full Text] [Related]
30. A probabilistic approach to chronic effects assessments for listed species in a vernal pool case study. Oliver L; Sinnathamby S; Purucker S; Raimondo S Integr Environ Assess Manag; 2024 Sep; 20(5):1654-1666. PubMed ID: 38695647 [TBL] [Abstract][Full Text] [Related]
31. Effects assessment: boron compounds in the aquatic environment. Schoderboeck L; Mühlegger S; Losert A; Gausterer C; Hornek R Chemosphere; 2011 Jan; 82(3):483-7. PubMed ID: 21055789 [TBL] [Abstract][Full Text] [Related]
32. Probabilistic modeling of the flows and environmental risks of nano-silica. Wang Y; Kalinina A; Sun T; Nowack B Sci Total Environ; 2016 Mar; 545-546():67-76. PubMed ID: 26745294 [TBL] [Abstract][Full Text] [Related]
33. Advancing Fifth Percentile Hazard Concentration Estimation Using Toxicity-Normalized Species Sensitivity Distributions. Dhond AK; Barron MG Environ Sci Technol; 2022 Dec; 56(23):17188-17196. PubMed ID: 36410104 [TBL] [Abstract][Full Text] [Related]
34. Deriving a water quality guideline for protection of aquatic communities exposed to triclosan in the Canadian environment. Hill KL; Breton RL; Manning GE; Teed RS; Capdevielle M; Slezak B Integr Environ Assess Manag; 2018 Jul; 14(4):437-441. PubMed ID: 29528192 [TBL] [Abstract][Full Text] [Related]
35. Probabilistic uncertainty analysis of the European Union system for the evaluation of substances multimedia regional distribution model. Matthies M; Berding V; Beyer A Environ Toxicol Chem; 2004 Oct; 23(10):2494-502. PubMed ID: 15511110 [TBL] [Abstract][Full Text] [Related]
36. Possibilities and limitations of modeling environmental exposure to engineered nanomaterials by probabilistic material flow analysis. Gottschalk F; Sonderer T; Scholz RW; Nowack B Environ Toxicol Chem; 2010 May; 29(5):1036-48. PubMed ID: 20821538 [TBL] [Abstract][Full Text] [Related]
37. Environmental hazard assessment for polymeric and inorganic nanobiomaterials used in drug delivery. Hauser M; Li G; Nowack B J Nanobiotechnology; 2019 Apr; 17(1):56. PubMed ID: 30992030 [TBL] [Abstract][Full Text] [Related]
38. Deriving predicted no-effect concentrations (PNECs) for emerging contaminants in the river Po, Italy, using three approaches: Assessment factor, species sensitivity distribution and AQUATOX ecosystem modelling. Gredelj A; Barausse A; Grechi L; Palmeri L Environ Int; 2018 Oct; 119():66-78. PubMed ID: 29935425 [TBL] [Abstract][Full Text] [Related]
39. A Bayesian approach for determining the no effect concentration and hazardous concentration in ecotoxicology. Fox DR Ecotoxicol Environ Saf; 2010 Feb; 73(2):123-31. PubMed ID: 19836077 [TBL] [Abstract][Full Text] [Related]
40. Combining exposure and effect modeling into an integrated probabilistic environmental risk assessment for nanoparticles. Jacobs R; Meesters JA; Ter Braak CJ; van de Meent D; van der Voet H Environ Toxicol Chem; 2016 Dec; 35(12):2958-2967. PubMed ID: 27146724 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]