These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
265 related articles for article (PubMed ID: 31536072)
1. Construction of a DNA-AuNP-based satellite network for exosome analysis. Gao ML; Yin BC; Ye BC Analyst; 2019 Oct; 144(20):5996-6003. PubMed ID: 31536072 [TBL] [Abstract][Full Text] [Related]
2. A dual signal amplification method for exosome detection based on DNA dendrimer self-assembly. Gao ML; He F; Yin BC; Ye BC Analyst; 2019 Mar; 144(6):1995-2002. PubMed ID: 30698587 [TBL] [Abstract][Full Text] [Related]
3. A hybridization chain reaction based assay for fluorometric determination of exosomes using magnetic nanoparticles and both aptamers and antibody as recognition elements. Shi L; Ba L; Xiong Y; Peng G Mikrochim Acta; 2019 Nov; 186(12):796. PubMed ID: 31734770 [TBL] [Abstract][Full Text] [Related]
4. In Situ Formation of Gold Nanoparticles Decorated Ti Zhang H; Wang Z; Wang F; Zhang Y; Wang H; Liu Y Anal Chem; 2020 Apr; 92(7):5546-5553. PubMed ID: 32186362 [TBL] [Abstract][Full Text] [Related]
5. A dual-signal amplification platform for sensitive fluorescence biosensing of leukemia-derived exosomes. Huang L; Wang DB; Singh N; Yang F; Gu N; Zhang XE Nanoscale; 2018 Nov; 10(43):20289-20295. PubMed ID: 30371719 [TBL] [Abstract][Full Text] [Related]
6. DNA four-way junction-driven dual-rolling circle amplification sandwich-type aptasensor for ultra-sensitive and specific detection of tumor-derived exosomes. Zhao Z; Yang S; Tang X; Feng L; Ding Z; Chen Z; Luo X; Deng R; Sheng J; Xie S; Chang K; Chen M Biosens Bioelectron; 2024 Feb; 246():115841. PubMed ID: 38006701 [TBL] [Abstract][Full Text] [Related]
7. The integration platform for exosome capture and colorimetric detection: Site occupying effect-modulated MOF-aptamer interaction and aptamer-Au NPs-dopamine interaction. Kuang J; Zhao L; Ruan S; Sun Y; Wu Z; Zhang H; Zhang M; Hu P Anal Chim Acta; 2024 Nov; 1329():343234. PubMed ID: 39396297 [TBL] [Abstract][Full Text] [Related]
8. Aptamer/AuNP Biosensor for Colorimetric Profiling of Exosomal Proteins. Jiang Y; Shi M; Liu Y; Wan S; Cui C; Zhang L; Tan W Angew Chem Int Ed Engl; 2017 Sep; 56(39):11916-11920. PubMed ID: 28834063 [TBL] [Abstract][Full Text] [Related]
9. Surface plasmon resonance biosensor using hydrogel-AuNP supramolecular spheres for determination of prostate cancer-derived exosomes. Chen W; Li J; Wei X; Fan Y; Qian H; Li S; Xiang Y; Ding S Mikrochim Acta; 2020 Oct; 187(11):590. PubMed ID: 33025277 [TBL] [Abstract][Full Text] [Related]
10. Highly Sensitive Aptasensor for Detecting Cancerous Exosomes Based on Clover-like Gold Nanoclusters. Cheng W; Duan C; Chen Y; Li D; Hou Z; Yao Y; Jiao J; Xiang Y Anal Chem; 2023 Feb; 95(7):3606-3612. PubMed ID: 36565296 [TBL] [Abstract][Full Text] [Related]
11. DNase I enzyme-aided fluorescence signal amplification based on graphene oxide-DNA aptamer interactions for colorectal cancer exosome detection. Wang H; Chen H; Huang Z; Li T; Deng A; Kong J Talanta; 2018 Jul; 184():219-226. PubMed ID: 29674035 [TBL] [Abstract][Full Text] [Related]
12. A simple fluorescence aptasensor for gastric cancer exosome detection based on branched rolling circle amplification. Huang R; He L; Li S; Liu H; Jin L; Chen Z; Zhao Y; Li Z; Deng Y; He N Nanoscale; 2020 Jan; 12(4):2445-2451. PubMed ID: 31894795 [TBL] [Abstract][Full Text] [Related]
13. A catalytic molecule machine-driven biosensing method for amplified electrochemical detection of exosomes. Cao Y; Li L; Han B; Wang Y; Dai Y; Zhao J Biosens Bioelectron; 2019 Sep; 141():111397. PubMed ID: 31200334 [TBL] [Abstract][Full Text] [Related]
14. AuNP-Amplified Surface Acoustic Wave Sensor for the Quantification of Exosomes. Wang C; Wang C; Jin D; Yu Y; Yang F; Zhang Y; Yao Q; Zhang GJ ACS Sens; 2020 Feb; 5(2):362-369. PubMed ID: 31933360 [TBL] [Abstract][Full Text] [Related]
15. PolyA-tailed and fluorophore-labeled aptamer-gold nanoparticle conjugate for fluorescence turn-on bioassay using iodide-induced ligand displacement. Li W; Dong Y; Wang X; Li H; Xu D Biosens Bioelectron; 2015 Apr; 66():43-9. PubMed ID: 25460880 [TBL] [Abstract][Full Text] [Related]
16. A conjugated aptamer-gold nanoparticle fluorescent probe for highly sensitive detection of rHuEPO-α. Sun J; Guo A; Zhang Z; Guo L; Xie J Sensors (Basel); 2011; 11(11):10490-501. PubMed ID: 22346654 [TBL] [Abstract][Full Text] [Related]
17. An aptamer-based new method for competitive fluorescence detection of exosomes. Yu X; He L; Pentok M; Yang H; Yang Y; Li Z; He N; Deng Y; Li S; Liu T; Chen X; Luo H Nanoscale; 2019 Sep; 11(33):15589-15595. PubMed ID: 31403149 [TBL] [Abstract][Full Text] [Related]
18. Surface plasmon resonance biosensor for exosome detection based on reformative tyramine signal amplification activated by molecular aptamer beacon. Chen W; Li Z; Cheng W; Wu T; Li J; Li X; Liu L; Bai H; Ding S; Li X; Yu X J Nanobiotechnology; 2021 Dec; 19(1):450. PubMed ID: 34952586 [TBL] [Abstract][Full Text] [Related]
19. A light-up fluorescence resonance energy transfer magnetic aptamer-sensor for ultra-sensitive lung cancer exosome detection. Zhu N; Li G; Zhou J; Zhang Y; Kang K; Ying B; Yi Q; Wu Y J Mater Chem B; 2021 Mar; 9(10):2483-2493. PubMed ID: 33656037 [TBL] [Abstract][Full Text] [Related]
20. Rapid and sensitive exosome detection with CRISPR/Cas12a. Zhao X; Zhang W; Qiu X; Mei Q; Luo Y; Fu W Anal Bioanal Chem; 2020 Jan; 412(3):601-609. PubMed ID: 31897558 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]