These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
265 related articles for article (PubMed ID: 31536072)
21. Label-Free Analysis of Exosomes with Hairpin Structure-Mediated Multiple Signal Amplification Strategy. Zhu C; Gong L; Yang Y Appl Biochem Biotechnol; 2022 Sep; 194(9):4147-4155. PubMed ID: 35639245 [TBL] [Abstract][Full Text] [Related]
22. A multipedal DNA walker for amplified detection of tumor exosomes. Miao P; Tang Y Chem Commun (Camb); 2020 May; 56(37):4982-4985. PubMed ID: 32289816 [TBL] [Abstract][Full Text] [Related]
23. Designed Co-DNA-Locker and Ratiometric SERS Sensing for Accurate Detection of Exosomes Based on Gold Nanorod Arrays. Wang J; Xie H; Ding C ACS Appl Mater Interfaces; 2021 Jul; 13(28):32837-32844. PubMed ID: 34236165 [TBL] [Abstract][Full Text] [Related]
24. Highly Sensitive Electrochemical Detection of Tumor Exosomes Based on Aptamer Recognition-Induced Multi-DNA Release and Cyclic Enzymatic Amplification. Dong H; Chen H; Jiang J; Zhang H; Cai C; Shen Q Anal Chem; 2018 Apr; 90(7):4507-4513. PubMed ID: 29512380 [TBL] [Abstract][Full Text] [Related]
25. Chemiluminescence DNA biosensor based on dual-amplification of thrombin and thiocyanuric acid-gold nanoparticle network. Li X; Li W; Zhang S Analyst; 2010 Feb; 135(2):332-6. PubMed ID: 20098767 [TBL] [Abstract][Full Text] [Related]
26. Proximity ligation assay induced and DNAzyme powered DNA motor for fluorescent detection of thrombin. Yun W; You L; Li F; Wu H; Chen L; Yang L Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jan; 207():39-45. PubMed ID: 30195184 [TBL] [Abstract][Full Text] [Related]
27. General colorimetric detection of proteins and small molecules based on cyclic enzymatic signal amplification and hairpin aptamer probe. Li J; Fu HE; Wu LJ; Zheng AX; Chen GN; Yang HH Anal Chem; 2012 Jun; 84(12):5309-15. PubMed ID: 22642720 [TBL] [Abstract][Full Text] [Related]
28. Development of an aptasensor for electrochemical detection of exosomes. Zhou Q; Rahimian A; Son K; Shin DS; Patel T; Revzin A Methods; 2016 Mar; 97():88-93. PubMed ID: 26500145 [TBL] [Abstract][Full Text] [Related]
29. Contribution of gold nanoparticles to the catalytic DNA strand displacement in leakage reduction and signal amplification. Wang B; Zhou X; Yao D; Sun X; He M; Wang X; Yin X; Liang H Chem Commun (Camb); 2017 Oct; 53(79):10950-10953. PubMed ID: 28933793 [TBL] [Abstract][Full Text] [Related]
30. A terbium-based metal-organic framework@gold nanoparticle system as a fluorometric probe for aptamer based determination of adenosine triphosphate. Qu F; Sun C; Lv X; You J Mikrochim Acta; 2018 Jul; 185(8):359. PubMed ID: 29978289 [TBL] [Abstract][Full Text] [Related]
31. Universal Ti Zhang Q; Wang F; Zhang H; Zhang Y; Liu M; Liu Y Anal Chem; 2018 Nov; 90(21):12737-12744. PubMed ID: 30350604 [TBL] [Abstract][Full Text] [Related]
32. Dual rolling circle amplification-enabled ultrasensitive multiplex detection of exosome biomarkers using electrochemical aptasensors. Hashkavayi AB; Cha BS; Lee ES; Park KS Anal Chim Acta; 2022 May; 1205():339762. PubMed ID: 35414380 [TBL] [Abstract][Full Text] [Related]
33. Structured DNA Aptamer Interactions with Gold Nanoparticles. Mirau PA; Smith JE; Chávez JL; Hagen JA; Kelley-Loughnane N; Naik R Langmuir; 2018 Feb; 34(5):2139-2146. PubMed ID: 29283584 [TBL] [Abstract][Full Text] [Related]
34. Highly sensitive MicroRNA 146a detection using a gold nanoparticle-based CTG repeat probing system and isothermal amplification. Le BH; Seo YJ Anal Chim Acta; 2018 Jan; 999():155-160. PubMed ID: 29254567 [TBL] [Abstract][Full Text] [Related]
35. A simple and sensitive aptasensor for colorimetric detection of adenosine triphosphate based on unmodified gold nanoparticles. Mao Y; Fan T; Gysbers R; Tan Y; Liu F; Lin S; Jiang Y Talanta; 2017 Jun; 168():279-285. PubMed ID: 28391854 [TBL] [Abstract][Full Text] [Related]
36. Substantial dimerized G-quadruplex signal units engineered by cutting-mediated exponential rolling circle amplification for ultrasensitive and label-free detection of exosomes. Ding Z; Wei Y; Liu X; Han F; Xu Z Anal Chim Acta; 2023 May; 1253():341098. PubMed ID: 36965991 [TBL] [Abstract][Full Text] [Related]
37. A colorimetric and photothermal dual-mode biosensing platform based on nanozyme-functionalized flower-like DNA structures for tumor-derived exosome detection. Zhang X; Zhu X; Li Y; Hai X; Bi S Talanta; 2023 Jun; 258():124456. PubMed ID: 36940568 [TBL] [Abstract][Full Text] [Related]
38. Development of a CD63 Aptamer for Efficient Cancer Immunochemistry and Immunoaffinity-Based Exosome Isolation. Song Z; Mao J; Barrero RA; Wang P; Zhang F; Wang T Molecules; 2020 Nov; 25(23):. PubMed ID: 33261145 [TBL] [Abstract][Full Text] [Related]
39. Ultrasensitive Detection of Exosomes by Target-Triggered Three-Dimensional DNA Walking Machine and Exonuclease III-Assisted Electrochemical Ratiometric Biosensing. Zhao L; Sun R; He P; Zhang X Anal Chem; 2019 Nov; 91(22):14773-14779. PubMed ID: 31660712 [TBL] [Abstract][Full Text] [Related]
40. Competitive protection of aptamer-functionalized gold nanoparticles by controlling the DNA assembly. Li F; Li J; Wang C; Zhang J; Li XF; Le XC Anal Chem; 2011 Sep; 83(17):6464-7. PubMed ID: 21766782 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]