BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 31536173)

  • 1. Reduced sulphur sources favour Hg
    Lavoie NC; Grégoire DS; Stenzler BR; Poulain AJ
    Geobiology; 2020 Jan; 18(1):70-79. PubMed ID: 31536173
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stable Isotope Fractionation Reveals Similar Atomic-Level Controls during Aerobic and Anaerobic Microbial Hg Transformation Pathways.
    Grégoire DS; Janssen SE; Lavoie NC; Tate MT; Poulain AJ
    Appl Environ Microbiol; 2021 Aug; 87(18):e0067821. PubMed ID: 34232740
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heliobacteria Reveal Fermentation As a Key Pathway for Mercury Reduction in Anoxic Environments.
    Grégoire DS; Lavoie NC; Poulain AJ
    Environ Sci Technol; 2018 Apr; 52(7):4145-4153. PubMed ID: 29514452
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of biogeochemical controls on the formation, uptake and accumulation of methylmercury in rice paddies in the vicinity of a coal-fired power plant and a municipal solid waste incinerator in Taiwan.
    Su YB; Chang WC; Hsi HC; Lin CC
    Chemosphere; 2016 Jul; 154():375-384. PubMed ID: 27070857
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of soil properties on production and bioaccumulation of methylmercury in rice paddies at a mercury mining area, China.
    Yin D; He T; Yin R; Zeng L
    J Environ Sci (China); 2018 Jun; 68():194-205. PubMed ID: 29908739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unraveling Microbial Communities Associated with Methylmercury Production in Paddy Soils.
    Liu YR; Johs A; Bi L; Lu X; Hu HW; Sun D; He JZ; Gu B
    Environ Sci Technol; 2018 Nov; 52(22):13110-13118. PubMed ID: 30335986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mobilization and methylation of mercury with sulfur addition in paddy soil: Implications for integrated water-sulfur management in controlling Hg accumulation in rice.
    Li Y; Lu C; Zhu N; Chao J; Hu W; Zhang Z; Wang Y; Liang L; Chen J; Xu D; Gao Y; Zhao J
    J Hazard Mater; 2022 May; 430():128447. PubMed ID: 35158248
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of methylmercury accumulation in wheat and rice grown in straw-amended paddy soil.
    Wang Y; Chen Z; Wu Y; Zhong H
    Sci Total Environ; 2019 Dec; 697():134143. PubMed ID: 31476499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of sulfate and selenite on mercury methylation in a mercury-contaminated rice paddy soil under anoxic conditions.
    Wang Y; Dang F; Zhong H; Wei Z; Li P
    Environ Sci Pollut Res Int; 2016 Mar; 23(5):4602-8. PubMed ID: 26520099
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of Farming Activities on the Biogeochemistry of Mercury in Rice-Paddy Soil Systems.
    Tang W; Su Y; Gao Y; Zhong H
    Bull Environ Contam Toxicol; 2019 May; 102(5):635-642. PubMed ID: 31053868
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methylmercury production in a paddy soil and its uptake by rice plants as affected by different geochemical mercury pools.
    Liu J; Wang J; Ning Y; Yang S; Wang P; Shaheen SM; Feng X; Rinklebe J
    Environ Int; 2019 Aug; 129():461-469. PubMed ID: 31154148
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amendments of nitrogen and sulfur mitigate carbon-promoting effect on microbial mercury methylation in paddy soils.
    Li Y; Dai SS; Zhao J; Hu ZC; Liu Q; Feng J; Huang Q; Gao Y; Liu YR
    J Hazard Mater; 2023 Apr; 448():130983. PubMed ID: 36860084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rice root exudates affect microbial methylmercury production in paddy soils.
    Zhao JY; Ye ZH; Zhong H
    Environ Pollut; 2018 Nov; 242(Pt B):1921-1929. PubMed ID: 30072222
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mercury methylation in rice paddies and its possible controlling factors in the Hg mining area, Guizhou province, Southwest China.
    Zhao L; Qiu G; Anderson CWN; Meng B; Wang D; Shang L; Yan H; Feng X
    Environ Pollut; 2016 Aug; 215():1-9. PubMed ID: 27176759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selenium inhibits sulfate-mediated methylmercury production in rice paddy soil.
    Wang YJ; Dang F; Zhao JT; Zhong H
    Environ Pollut; 2016 Jun; 213():232-239. PubMed ID: 26901075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A little bit of light goes a long way: the role of phototrophs on mercury cycling.
    Grégoire DS; Poulain AJ
    Metallomics; 2014 Mar; 6(3):396-407. PubMed ID: 24531738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Overlooked Role of Putative Non-Hg Methylators in Predicting Methylmercury Production in Paddy Soils.
    Liu YR; Yang Z; Zhou X; Qu X; Li Z; Zhong H
    Environ Sci Technol; 2019 Nov; 53(21):12330-12338. PubMed ID: 31603332
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of different rotation systems on mercury methylation in paddy fields.
    Sun T; Ma M; Du H; Wang X; Zhang Y; Wang Y; Wang D
    Ecotoxicol Environ Saf; 2019 Oct; 182():109403. PubMed ID: 31276889
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impacts of selenium supplementation on soil mercury speciation, and inorganic mercury and methylmercury uptake in rice (Oryza sativa L.).
    Xu X; Yan M; Liang L; Lu Q; Han J; Liu L; Feng X; Guo J; Wang Y; Qiu G
    Environ Pollut; 2019 Jun; 249():647-654. PubMed ID: 30933762
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dimethylmercury in Floodwaters of Mercury Contaminated Rice Paddies.
    Wang Z; Sun T; Driscoll CT; Zhang H; Zhang X
    Environ Sci Technol; 2019 Aug; 53(16):9453-9461. PubMed ID: 31402663
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.