These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 31536337)
1. 1-Methyl-1,4-cyclohexadiene as a Traceless Reducing Agent for the Synthesis of Catechols and Hydroquinones. Baschieri A; Amorati R; Valgimigli L; Sambri L J Org Chem; 2019 Nov; 84(21):13655-13664. PubMed ID: 31536337 [TBL] [Abstract][Full Text] [Related]
2. Direct Synthesis of Hydroquinones from Quinones through Sequential and Continuous-Flow Hydrogenation-Derivatization Using Heterogeneous Au-Pt Nanoparticles as Catalysts. Miyamura H; Tobita F; Suzuki A; Kobayashi S Angew Chem Int Ed Engl; 2019 Jul; 58(27):9220-9224. PubMed ID: 31050108 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of the cytotoxic potential of catechols and quinones structurally related to butylated hydroxyanisole. Lam LK; Garg PK; Swanson SM; Pezzuto JM J Pharm Sci; 1988 May; 77(5):393-5. PubMed ID: 3411459 [TBL] [Abstract][Full Text] [Related]
4. Scales of oxidation potentials, pK(a), and BDE of various hydroquinones and catechols in DMSO. Zhu XQ; Wang CH; Liang H J Org Chem; 2010 Nov; 75(21):7240-57. PubMed ID: 20873851 [TBL] [Abstract][Full Text] [Related]
5. Highly efficient and chemoselective reductive bis-silylation of quinones by silyltellurides. Yamago S; Miyazoe H; Iida K; Yoshida Ji Org Lett; 2000 Nov; 2(23):3671-3. PubMed ID: 11073672 [TBL] [Abstract][Full Text] [Related]
6. Oxidations of N-coordinated Arsinidene and Stibinidene by Substituted Quinones: A Remarkable Follow-Up Reactivity. Zechovský J; Kertész E; Erben M; Jambor R; Růžička A; Benkö Z; Dostál L Chempluschem; 2023 Feb; 88(2):e202300018. PubMed ID: 36756773 [TBL] [Abstract][Full Text] [Related]
7. Highly selective 1,4- and 1,6-addition of P(O)-H compounds to p-quinones: a divergent method for the synthesis of C- and O-phosphoryl hydroquinone derivatives. Xiong B; Shen R; Goto M; Yin SF; Han LB Chemistry; 2012 Dec; 18(52):16902-10. PubMed ID: 23143865 [TBL] [Abstract][Full Text] [Related]
8. Semi-quinone formation from the catechol and ortho-quinone metabolites of the antitumor agent VP-16-213. van Maanen JM; Verkerk UH; Broersen J; Lafleur MV; De Vries J; Retèl J; Pinedo HM Free Radic Res Commun; 1988; 4(6):371-84. PubMed ID: 2854106 [TBL] [Abstract][Full Text] [Related]
9. From phenols to quinones: Thermodynamics of radical scavenging activity of para-substituted phenols. Michalík M; Poliak P; Lukeš V; Klein E Phytochemistry; 2019 Oct; 166():112077. PubMed ID: 31374519 [TBL] [Abstract][Full Text] [Related]
10. Altering toluene 4-monooxygenase by active-site engineering for the synthesis of 3-methoxycatechol, methoxyhydroquinone, and methylhydroquinone. Tao Y; Fishman A; Bentley WE; Wood TK J Bacteriol; 2004 Jul; 186(14):4705-13. PubMed ID: 15231803 [TBL] [Abstract][Full Text] [Related]
11. Mechanistic aspects of the tyrosinase oxidation of hydroquinone. Ramsden CA; Riley PA Bioorg Med Chem Lett; 2014 Jun; 24(11):2463-4. PubMed ID: 24767847 [TBL] [Abstract][Full Text] [Related]
12. Synthesis of the catechols of natural and synthetic estrogens by using 2-iodoxybenzoic acid (IBX) as the oxidizing agent. Saeed M; Zahid M; Rogan E; Cavalieri E Steroids; 2005 Mar; 70(3):173-8. PubMed ID: 15763595 [TBL] [Abstract][Full Text] [Related]
13. Dirhodium-catalyzed phenol and aniline oxidations with T-HYDRO. Substrate scope and mechanism of oxidation. Ratnikov MO; Farkas LE; McLaughlin EC; Chiou G; Choi H; el-Khalafy SH; Doyle MP J Org Chem; 2011 Apr; 76(8):2585-93. PubMed ID: 21413678 [TBL] [Abstract][Full Text] [Related]
14. Formation of para-quinomethanes via 4-aminobutylcatechol oxidation and ortho-quinone tautomerism. Land EJ; Ramsden CA; Riley PA; Yoganathan G Org Biomol Chem; 2003 Sep; 1(17):3120-4. PubMed ID: 14518136 [TBL] [Abstract][Full Text] [Related]
15. Chemistry-toxicity relationships for the effects of di- and trihydroxybenzenes to Tetrahymena pyriformis. Aptula AO; Roberts DW; Cronin MT; Schultz TW Chem Res Toxicol; 2005 May; 18(5):844-54. PubMed ID: 15892578 [TBL] [Abstract][Full Text] [Related]
16. Kinetic study of electrochemically induced michael reactions of o-quinones with Meldrum's acid derivatives. Synthesis of highly oxygenated catechols. Nematollahi D; Shayani-jam H J Org Chem; 2008 May; 73(9):3428-34. PubMed ID: 18396907 [TBL] [Abstract][Full Text] [Related]
17. Reaction between ortho-semiquinones and oxygen: pulse radiolysis, electron spin resonance, and oxygen uptake studies. Kalyanaraman B; Korytowski W; Pilas B; Sarna T; Land EJ; Truscott TG Arch Biochem Biophys; 1988 Oct; 266(1):277-84. PubMed ID: 2845864 [TBL] [Abstract][Full Text] [Related]
18. Oxidation of the substituted catechols dihydroxyphenylalanine methyl ester and trihydroxyphenylalanine by lactoperoxidase and its compounds. Metodiewa D; Reszka K; Dunford HB Arch Biochem Biophys; 1989 Nov; 274(2):601-8. PubMed ID: 2552928 [TBL] [Abstract][Full Text] [Related]
19. Strategies for synthesis of adducts of omicron-quinone metabolites of carcinogenic polycyclic aromatic hydrocarbons with 2'-deoxyribonucleosides. Ran C; Dai Q; Ruan Q; Penning TM; Blair IA; Harvey RG J Org Chem; 2008 Feb; 73(3):992-1003. PubMed ID: 18181642 [TBL] [Abstract][Full Text] [Related]