These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 31536345)

  • 1. Potential Energy Curves for Formation of the CH
    Lakshmanan S; Spada RFK; Machado FBC; Hase WL
    J Phys Chem A; 2019 Oct; 123(41):8968-8975. PubMed ID: 31536345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CH
    Mazarei E; Barker JR
    Phys Chem Chem Phys; 2022 Jan; 24(2):914-927. PubMed ID: 34913447
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Singlet and triplet potential surfaces for the O2+C2H4 reaction.
    Park K; West A; Raheja E; Sellner B; Lischka H; Windus TL; Hase WL
    J Chem Phys; 2010 Nov; 133(18):184306. PubMed ID: 21073222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct Dynamics Simulation of the Thermal
    Lakshmanan S; Pratihar S; Machado FBC; Hase WL
    J Phys Chem A; 2018 May; 122(21):4808-4818. PubMed ID: 29697979
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct Dynamics Simulations of the CH
    Lakshmanan S; Pratihar S; Hase WL
    J Phys Chem A; 2019 May; 123(20):4360-4369. PubMed ID: 31034236
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How Does the Central Atom Substitution Impact the Properties of a Criegee Intermediate? Insights from Multireference Calculations.
    Trabelsi T; Kumar M; Francisco JS
    J Am Chem Soc; 2017 Nov; 139(43):15446-15449. PubMed ID: 29023119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of a Criegee intermediate in the low-temperature oxidation of dimethyl sulfoxide.
    Asatryan R; Bozzelli JW
    Phys Chem Chem Phys; 2008 Apr; 10(13):1769-80. PubMed ID: 18350182
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New insight into the gas-phase bimolecular self-reaction of the HOO radical.
    Anglada JM; Olivella S; Solé A
    J Phys Chem A; 2007 Mar; 111(9):1695-704. PubMed ID: 17290977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational Chemical Kinetics for the Reaction of Criegee Intermediate CH
    Raghunath P; Lee YP; Lin MC
    J Phys Chem A; 2017 May; 121(20):3871-3878. PubMed ID: 28453276
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct Dynamics Simulations of the Unimolecular Decomposition of the Randomly Excited
    Yao Y; Lakshmanan S; Pratihar S; Hase WL
    J Phys Chem A; 2020 Mar; 124(9):1821-1828. PubMed ID: 32024358
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Model studies of hydrogen atom addition and abstraction processes involving ortho-, meta-, and para-benzynes.
    Clark AE; Davidson ER
    J Am Chem Soc; 2001 Oct; 123(43):10691-8. PubMed ID: 11674001
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reaction Dynamics of O((3)P) + Propyne: II. Primary Products, Branching Ratios, and Role of Intersystem Crossing from Ab Initio Coupled Triplet/Singlet Potential Energy Surfaces and Statistical Calculations.
    Gimondi I; Cavallotti C; Vanuzzo G; Balucani N; Casavecchia P
    J Phys Chem A; 2016 Jul; 120(27):4619-33. PubMed ID: 27010914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detailed mechanism of the CH₂I + O₂ reaction: yield and self-reaction of the simplest Criegee intermediate CH₂OO.
    Ting WL; Chang CH; Lee YF; Matsui H; Lee YP; Lin JJ
    J Chem Phys; 2014 Sep; 141(10):104308. PubMed ID: 25217917
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A quantum chemical study of the mechanisms of olefin addition to group 9 transition metal dioxo compounds.
    Ahmed I; Tia R; Adei E
    Springerplus; 2016; 5(1):867. PubMed ID: 27386316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational investigation of the conrotatory and disrotatory isomerization channels of bicyclo[1.1.0]butane to buta-1,3-diene: a completely renormalized coupled-cluster study.
    Kinal A; Piecuch P
    J Phys Chem A; 2007 Feb; 111(4):734-42. PubMed ID: 17249766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism and rate constants of the CH
    Savchenkova AS; Semenikhin AS; Chechet IV; Matveev SG; Konnov AA; Mebel AM
    J Comput Chem; 2019 Jan; 40(2):387-399. PubMed ID: 30299558
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemically activated formation of organic acids in reactions of the Criegee intermediate with aldehydes and ketones.
    Jalan A; Allen JW; Green WH
    Phys Chem Chem Phys; 2013 Oct; 15(39):16841-52. PubMed ID: 23958859
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Semiclassical Dynamics on Machine-Learned Coupled Multireference Potential Energy Surfaces: Application to the Photodissociation of the Simplest Criegee Intermediate.
    Sit MK; Das S; Samanta K
    J Phys Chem A; 2023 Mar; 127(10):2376-2387. PubMed ID: 36856588
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical Study on the Reaction Mechanism and Kinetics of Criegee Intermediate CH
    Sun C; Zhang S; Yue J; Zhang S
    J Phys Chem A; 2018 Nov; 122(44):8729-8737. PubMed ID: 30336026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Global ab initio potential energy surfaces for the O2(3Σg-)+O2(3Σg-) interaction.
    Bartolomei M; Carmona-Novillo E; Hernández MI; Campos-Martínez J; Hernández-Lamoneda R
    J Chem Phys; 2010 Sep; 133(12):124311. PubMed ID: 20886936
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.