BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 31536350)

  • 1. Switching Dual Catalysis without Molecular Switch: Using A Multicomponent Information System for Reversible Reconfiguration of Catalytic Machinery.
    Goswami A; Paululat T; Schmittel M
    J Am Chem Soc; 2019 Oct; 141(39):15656-15663. PubMed ID: 31536350
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A toggle nanoswitch alternately controlling two catalytic reactions.
    De S; Pramanik S; Schmittel M
    Angew Chem Int Ed Engl; 2014 Dec; 53(51):14255-9. PubMed ID: 25349146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Allosteric regulation of rotational, optical and catalytic properties within multicomponent machinery.
    Saha S; Ghosh A; Paululat T; Schmittel M
    Dalton Trans; 2020 Jun; 49(25):8693-8700. PubMed ID: 32555898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Four-Component Catalytic Machinery: Reversible Three-State Control of Organocatalysis by Walking Back and Forth on a Track.
    Mittal N; Özer MS; Schmittel M
    Inorg Chem; 2018 Apr; 57(7):3579-3586. PubMed ID: 29227095
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalytically active nanorotor reversibly self-assembled by chemical signaling within an eight-component network.
    Goswami A; Pramanik S; Schmittel M
    Chem Commun (Camb); 2018 Apr; 54(32):3955-3958. PubMed ID: 29557468
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cation-triggered switchable asymmetric catalysis with chiral Aza-CrownPhos.
    Ouyang GH; He YM; Li Y; Xiang JF; Fan QH
    Angew Chem Int Ed Engl; 2015 Mar; 54(14):4334-7. PubMed ID: 25677923
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reversible Multicomponent AND Gate Triggered by Stoichiometric Chemical Pulses Commands the Self-Assembly and Actuation of Catalytic Machinery.
    Biswas PK; Saha S; Gaikwad S; Schmittel M
    J Am Chem Soc; 2020 Apr; 142(17):7889-7897. PubMed ID: 32286825
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Networking Nanoswitches for ON/OFF Control of Catalysis.
    Mittal N; Pramanik S; Paul I; De S; Schmittel M
    J Am Chem Soc; 2017 Mar; 139(12):4270-4273. PubMed ID: 28273418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Metalloregulated Four-State Nanoswitch Controls Two-Step Sequential Catalysis in an Eleven-Component System.
    Gaikwad S; Goswami A; De S; Schmittel M
    Angew Chem Int Ed Engl; 2016 Aug; 55(35):10512-7. PubMed ID: 27436617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Redox-dependent self-sorting toggles a rotary nanoswitch.
    Schmittel M; De S; Pramanik S
    Org Biomol Chem; 2015 Sep; 13(33):8937-44. PubMed ID: 26214385
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorous biphasic catalysis: synthesis and characterization of copper(I) and copper(II) fluoroponytailed 1,4,7-Rf-TACN and 2,2'-Rf-bipyridine complexes--their catalytic activity in the oxidation of hydrocarbons, olefins, and alcohols, including mechanistic implications.
    Contel M; Izuel C; Laguna M; Villuendas PR; Alonso PJ; Fish RH
    Chemistry; 2003 Sep; 9(17):4168-78. PubMed ID: 12953202
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catalytic Three-Component Machinery: Control of Catalytic Activity by Machine Speed.
    Paul I; Goswami A; Mittal N; Schmittel M
    Angew Chem Int Ed Engl; 2018 Jan; 57(1):354-358. PubMed ID: 29166556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A high-speed network of nanoswitches for on/off control of catalysis.
    Gaikwad S; Pramanik S; De S; Schmittel M
    Dalton Trans; 2018 Feb; 47(6):1786-1790. PubMed ID: 29354824
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multicomponent Pseudorotaxane Quadrilateral as Dual-Way Logic AND Gate with Two Catalytic Outputs.
    Kundu S; Ghosh A; Paul I; Schmittel M
    J Am Chem Soc; 2022 Jul; 144(29):13039-13043. PubMed ID: 35834720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent progress in asymmetric bifunctional catalysis using multimetallic systems.
    Shibasaki M; Kanai M; Matsunaga S; Kumagai N
    Acc Chem Res; 2009 Aug; 42(8):1117-27. PubMed ID: 19435320
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Remote Optically Controlled Modulation of Catalytic Properties of Nanoparticles through Reconfiguration of the Inorganic/Organic Interface.
    Lawrence RL; Scola B; Li Y; Lim CK; Liu Y; Prasad PN; Swihart MT; Knecht MR
    ACS Nano; 2016 Oct; 10(10):9470-9477. PubMed ID: 27666415
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic Amyloid Fibrils That Bind Copper to Activate Oxygen.
    Sternisha A; Makhlynets O
    Methods Mol Biol; 2017; 1596():59-68. PubMed ID: 28293880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flow-Assisted Switchable Catalysis of Metal Ions in a Microenvelope System Embedded with Core-Shell Polymers.
    Vishwakarma NK; Hwang YH; Adiyala PR; Kim DP
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):43104-43111. PubMed ID: 30444347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular recognition of redox-switchable bis-crown moieties assembled on a dicobalt complex.
    Shimakoshi H; Shibata K; Hisaeda Y
    Inorg Chem; 2009 Feb; 48(3):1045-52. PubMed ID: 19133742
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzyme-Driven, Switchable Catalysis Based on Dynamic Self-Assembly of Peptides.
    Li Q; Min J; Zhang J; Reches M; Shen Y; Su R; Wang Y; Qi W
    Angew Chem Int Ed Engl; 2023 Oct; 62(41):e202309830. PubMed ID: 37602955
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.