These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 31536361)

  • 1. Chirality Transfer in Galvanic Replacement Reactions.
    Liu J; Ni Z; Nandi P; Mirsaidov U; Huang Z
    Nano Lett; 2019 Oct; 19(10):7427-7433. PubMed ID: 31536361
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extension of Compositional Space to the Ternary in Alloy Chiral Nanoparticles through Galvanic Replacement Reactions.
    Ni Z; Zhu Y; Liu J; Yang L; Sun P; Gu M; Huang Z
    Adv Sci (Weinh); 2020 Dec; 7(23):2001321. PubMed ID: 33304745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binary Chiral Nanoparticles Exhibit Amplified Optical Activity and Enhanced Refractive Index Sensitivity.
    Yang L; Nandi P; Ma Y; Liu J; Mirsaidov U; Huang Z
    Small; 2020 Feb; 16(6):e1906048. PubMed ID: 31961482
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mesoporous alloy chiral nanoparticles with high production yield and strong optical activities.
    Ma Y; Yang L; Chen Y; Bai X; Qu G; Yao T; Hu X; Wang J; Xu Z; Yu Y; Huang Z
    Chem Commun (Camb); 2023 Dec; 59(98):14551-14554. PubMed ID: 37990561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chiral Nanoparticles with Enhanced Thermal Stability of Chiral Structures through Alloying.
    Ma Y; Lin C; Cai L; Qu G; Bai X; Yang L; Huang Z
    Small; 2022 Apr; 18(14):e2107657. PubMed ID: 35174949
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chiral Ligand-Free, Optically Active Nanoparticles Inherently Composed of Chiral Lattices at the Atomic Scale.
    Yang L; Liu J; Sun P; Ni Z; Ma Y; Huang Z
    Small; 2020 Jun; 16(24):e2001473. PubMed ID: 32419372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Palladium-rich plasmonic nanorattles with enhanced LSPRs
    Ivanchenko M; Evangelista AJ; Jing H
    RSC Adv; 2021 Dec; 11(63):40112-40119. PubMed ID: 35494128
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tweaking the Interplay among Galvanic Exchange, Oxidative Etching, and Seed-Mediated Deposition toward Architectural Control of Multimetallic Nanoelectrocatalysts.
    Li GG; Wang Z; Blom DA; Wang H
    ACS Appl Mater Interfaces; 2019 Jul; 11(26):23482-23494. PubMed ID: 31179681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Galvanic Replacement Reaction: Enabling the Creation of Active Catalytic Structures.
    Kong X; Wu H; Lu K; Zhang X; Zhu Y; Lei H
    ACS Appl Mater Interfaces; 2023 Sep; 15(35):41205-41223. PubMed ID: 37638534
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spongelike nanoporous Pd and Pd/Au structures: facile synthesis and enhanced electrocatalytic activity.
    Son J; Cho S; Lee C; Lee Y; Shim JH
    Langmuir; 2014 Apr; 30(12):3579-88. PubMed ID: 24617746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cu
    Wan J; Sun L; Sun X; Liu C; Yang G; Zhang B; Tao Y; Yang Y; Zhang Q
    J Am Chem Soc; 2024 Apr; 146(15):10640-10654. PubMed ID: 38568727
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of silica nanocapsules containing Ag/Au alloy nanoparticles by galvanic replacement reaction.
    Li H; Ha CS; Kim I
    J Nanosci Nanotechnol; 2010 Oct; 10(10):6825-8. PubMed ID: 21137805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hollow Pd-Ag Composite Nanowires for Fast Responding and Transparent Hydrogen Sensors.
    Jang JS; Qiao S; Choi SJ; Jha G; Ogata AF; Koo WT; Kim DH; Kim ID; Penner RM
    ACS Appl Mater Interfaces; 2017 Nov; 9(45):39464-39474. PubMed ID: 28937737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Galvanic Replacement of the Liquid Metal Galinstan.
    Hoshyargar F; Crawford J; O'Mullane AP
    J Am Chem Soc; 2017 Feb; 139(4):1464-1471. PubMed ID: 27626629
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and characterization of Pd@M(x)Cu(1-x) (M = Au, Pd, and Pt) nanocages with porous walls and a yolk-shell structure through galvanic replacement reactions.
    Xie S; Jin M; Tao J; Wang Y; Xie Z; Zhu Y; Xia Y
    Chemistry; 2012 Nov; 18(47):14974-80. PubMed ID: 23108763
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Au-Cu-M (M = Pt, Pd, Ag) nanorods with enhanced catalytic efficiency by galvanic replacement reaction.
    Wang X; Chen S; Reggiano G; Thota S; Wang Y; Kerns P; Suib SL; Zhao J
    Chem Commun (Camb); 2019 Jan; 55(9):1249-1252. PubMed ID: 30632545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Escape from the destruction of the galvanic replacement reaction for solid → hollow → solid conversion process in one pot reaction.
    Chien YH; Tsai MF; Shanmugam V; Sardar K; Huang CL; Yeh CS
    Nanoscale; 2013 May; 5(9):3863-71. PubMed ID: 23525096
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A general method for the rapid synthesis of hollow metallic or bimetallic nanoelectrocatalysts with urchinlike morphology.
    Guo S; Dong S; Wang E
    Chemistry; 2008; 14(15):4689-95. PubMed ID: 18384027
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct Cross-Linking of Au/Ag Alloy Nanoparticles into Monolithic Aerogels for Application in Surface-Enhanced Raman Scattering.
    Gao X; Esteves RJ; Nahar L; Nowaczyk J; Arachchige IU
    ACS Appl Mater Interfaces; 2016 May; 8(20):13076-85. PubMed ID: 27142886
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chiral Surface and Geometry of Metal Nanocrystals.
    Im SW; Ahn HY; Kim RM; Cho NH; Kim H; Lim YC; Lee HE; Nam KT
    Adv Mater; 2020 Oct; 32(41):e1905758. PubMed ID: 31834668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.