BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 31536738)

  • 1. Monoamine oxidase inhibitory activity of flavoured e-cigarette liquids.
    Truman P; Stanfill S; Heydari A; Silver E; Fowles J
    Neurotoxicology; 2019 Dec; 75():123-128. PubMed ID: 31536738
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing toxicant emissions from e-liquids with DIY additives used in response to a potential flavour ban in e-cigarettes.
    El-Hellani A; Soule EK; Daoud M; Salman R; El Hage R; Ardati O; El-Kaassamani M; Yassine A; Karaoghlanian N; Talih S; Saliba N; Shihadeh A
    Tob Control; 2022 Nov; 31(Suppl 3):s245-s248. PubMed ID: 36328456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monoamine oxidase inhibitory activity in tobacco particulate matter: Are harman and norharman the only physiologically relevant inhibitors?
    Truman P; Grounds P; Brennan KA
    Neurotoxicology; 2017 Mar; 59():22-26. PubMed ID: 28057462
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ethyl maltol, vanillin, corylone and other conventional confectionery-related flavour chemicals dominate in some e-cigarette liquids labelled 'tobacco' flavoured.
    Omaiye EE; Luo W; McWhirter KJ; Pankow JF; Talbot P
    Tob Control; 2022 Nov; 31(Suppl 3):s238-s244. PubMed ID: 36328460
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of E-Cigarette Liquid Flavoring Agents on Activity of Microsomal Recombinant CYP2A6, the Primary Nicotine-Metabolizing Enzyme.
    Winters BR; Kochar TK; Clapp PW; Jaspers I; Madden MC
    Chem Res Toxicol; 2020 Jul; 33(7):1689-1697. PubMed ID: 32496054
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monoamine oxidase inhibition dramatically increases the motivation to self-administer nicotine in rats.
    Guillem K; Vouillac C; Azar MR; Parsons LH; Koob GF; Cador M; Stinus L
    J Neurosci; 2005 Sep; 25(38):8593-600. PubMed ID: 16177026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A review of monoamine oxidase (MAO) inhibitors in tobacco or tobacco smoke.
    Hong SW; Teesdale-Spittle P; Page R; Truman P
    Neurotoxicology; 2022 Dec; 93():163-172. PubMed ID: 36155069
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of monoamine oxidase inhibition by cigarettes and modified risk tobacco products.
    van der Toorn M; Koshibu K; Schlage WK; Majeed S; Pospisil P; Hoeng J; Peitsch MC
    Toxicol Rep; 2019; 6():1206-1215. PubMed ID: 31768332
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monoamine oxidase inhibitory activity in tobacco smoke varies with tobacco type.
    Lewis AJ; Truman P; Hosking MR; Miller JH
    Tob Control; 2012 Jan; 21(1):39-43. PubMed ID: 21636610
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correlates of e-cigarette use before and after comprehensive regulatory changes and e-liquid flavour ban among general population.
    Ruokolainen O; Ollila H; Karjalainen K
    Drug Alcohol Rev; 2022 Jul; 41(5):1174-1183. PubMed ID: 35106874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of Common e-Liquid Flavorants and Added Nicotine on Toxicant Formation during Vaping Analyzed by
    Kerber PJ; Duell AK; Powers M; Strongin RM; Peyton DH
    Chem Res Toxicol; 2022 Jul; 35(7):1267-1276. PubMed ID: 35735356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High Content Screening in NHBE cells shows significantly reduced biological activity of flavoured e-liquids, when compared to cigarette smoke condensate.
    Czekala L; Simms L; Stevenson M; Trelles-Sticken E; Walker P; Walele T
    Toxicol In Vitro; 2019 Aug; 58():86-96. PubMed ID: 30880017
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition effects of Vernonia cinerea active compounds against cytochrome P450 2A6 and human monoamine oxidases, possible targets for reduction of tobacco dependence.
    Prasopthum A; Pouyfung P; Sarapusit S; Srisook E; Rongnoparut P
    Drug Metab Pharmacokinet; 2015 Apr; 30(2):174-81. PubMed ID: 25857233
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation and characterization of a monoamine oxidase B selective inhibitor from tobacco smoke.
    Khalil AA; Davies B; Castagnoli N
    Bioorg Med Chem; 2006 May; 14(10):3392-8. PubMed ID: 16458520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of electronic cigarettes on human middle ear.
    Song JJ; Go YY; Mun JY; Lee S; Im GJ; Kim YY; Lee JH; Chang J
    Int J Pediatr Otorhinolaryngol; 2018 Jun; 109():67-71. PubMed ID: 29728187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Monoamine Oxidase Inhibition on the Reinforcing Properties of Low-Dose Nicotine.
    Smith TT; Rupprecht LE; Cwalina SN; Onimus MJ; Murphy SE; Donny EC; Sved AF
    Neuropsychopharmacology; 2016 Aug; 41(9):2335-43. PubMed ID: 26955970
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation on the Antibacterial Activity of Electronic Cigarette Liquids (ECLs): A Proof of Concept Study.
    Fuochi V; Caruso M; Emma R; Stivala A; Polosa R; Distefano A; Furneri PM
    Curr Pharm Biotechnol; 2021; 22(7):983-994. PubMed ID: 32881666
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetics of Aldehyde Flavorant-Acetal Formation in E-Liquids with Different E-Cigarette Solvents and Common Additives Studied by
    Kerber PJ; Peyton DH
    Chem Res Toxicol; 2022 Aug; 35(8):1410-1417. PubMed ID: 35830545
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation of flavorant-propylene Glycol Adducts With Novel Toxicological Properties in Chemically Unstable E-Cigarette Liquids.
    Erythropel HC; Jabba SV; DeWinter TM; Mendizabal M; Anastas PT; Jordt SE; Zimmerman JB
    Nicotine Tob Res; 2019 Aug; 21(9):1248-1258. PubMed ID: 30335174
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flavoured and nicotine-containing e-liquids impair homeostatic properties of an alveolar-capillary cell model.
    Sabo AN; Filaudeau E; Da Silva S; Becker G; Monassier L; Kemmel V
    Food Chem Toxicol; 2023 Apr; 174():113650. PubMed ID: 36758787
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.