These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 31536804)

  • 61. Investigating emotion with music: an fMRI study.
    Koelsch S; Fritz T; V Cramon DY; Müller K; Friederici AD
    Hum Brain Mapp; 2006 Mar; 27(3):239-50. PubMed ID: 16078183
    [TBL] [Abstract][Full Text] [Related]  

  • 62. An fMRI Study of Affective Congruence across Visual and Auditory Modalities.
    Gao C; Weber CE; Wedell DH; Shinkareva SV
    J Cogn Neurosci; 2020 Jul; 32(7):1251-1262. PubMed ID: 32108554
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Activations in temporal areas using visual and auditory naming stimuli: A language fMRI study in temporal lobe epilepsy.
    Gonzálvez GG; Trimmel K; Haag A; van Graan LA; Koepp MJ; Thompson PJ; Duncan JS
    Epilepsy Res; 2016 Dec; 128():102-112. PubMed ID: 27833066
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Hearing emotional sounds: category representation in the human amygdala.
    Zhao Y; Sun Q; Chen G; Yang J
    Soc Neurosci; 2018 Feb; 13(1):117-128. PubMed ID: 27901403
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Coupling between Theta Oscillations and Cognitive Control Network during Cross-Modal Visual and Auditory Attention: Supramodal vs Modality-Specific Mechanisms.
    Wang W; Viswanathan S; Lee T; Grafton ST
    PLoS One; 2016; 11(7):e0158465. PubMed ID: 27391013
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Comparison of auditory and visual oddball fMRI in schizophrenia.
    Collier AK; Wolf DH; Valdez JN; Turetsky BI; Elliott MA; Gur RE; Gur RC
    Schizophr Res; 2014 Sep; 158(1-3):183-8. PubMed ID: 25037525
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The specificity of neural responses to music and their relation to voice processing: an fMRI-adaptation study.
    Armony JL; Aubé W; Angulo-Perkins A; Peretz I; Concha L
    Neurosci Lett; 2015 Apr; 593():35-9. PubMed ID: 25766754
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Deep neural network predicts emotional responses of the human brain from functional magnetic resonance imaging.
    Kim HC; Bandettini PA; Lee JH
    Neuroimage; 2019 Feb; 186():607-627. PubMed ID: 30366076
    [TBL] [Abstract][Full Text] [Related]  

  • 69. On the variability of the McGurk effect: audiovisual integration depends on prestimulus brain states.
    Keil J; Müller N; Ihssen N; Weisz N
    Cereb Cortex; 2012 Jan; 22(1):221-31. PubMed ID: 21625011
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Cortical integration of audio-visual speech and non-speech stimuli.
    Vander Wyk BC; Ramsay GJ; Hudac CM; Jones W; Lin D; Klin A; Lee SM; Pelphrey KA
    Brain Cogn; 2010 Nov; 74(2):97-106. PubMed ID: 20709442
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Early auditory sensory processing of voices is facilitated by visual mechanisms.
    Schall S; Kiebel SJ; Maess B; von Kriegstein K
    Neuroimage; 2013 Aug; 77():237-45. PubMed ID: 23563227
    [TBL] [Abstract][Full Text] [Related]  

  • 72. The neural basis of complex audiovisual objects maintenances in working memory.
    Xie YJ; Li YY; Xie B; Xu YY; Peng L
    Neuropsychologia; 2019 Oct; 133():107189. PubMed ID: 31513808
    [TBL] [Abstract][Full Text] [Related]  

  • 73. How modality specific is processing of auditory and visual rhythms?
    Pasinski AC; McAuley JD; Snyder JS
    Psychophysiology; 2016 Feb; 53(2):198-208. PubMed ID: 26459153
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Stimulus modality influences the acquisition and use of the rule-based strategy and the similarity-based strategy in category learning.
    Wu J; Fu Q; Rose M
    Neurobiol Learn Mem; 2020 Feb; 168():107152. PubMed ID: 31881353
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Brain activity during auditory and visual phonological, spatial and simple discrimination tasks.
    Salo E; Rinne T; Salonen O; Alho K
    Brain Res; 2013 Feb; 1496():55-69. PubMed ID: 23261663
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Differential dorsolateral prefrontal cortex activation during a verbal n-back task according to sensory modality.
    Rodriguez-Jimenez R; Avila C; Garcia-Navarro C; Bagney A; Aragon AM; Ventura-Campos N; Martinez-Gras I; Forn C; Ponce G; Rubio G; Jimenez-Arriero MA; Palomo T
    Behav Brain Res; 2009 Dec; 205(1):299-302. PubMed ID: 19712703
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Supramodal representation of emotions.
    Klasen M; Kenworthy CA; Mathiak KA; Kircher TT; Mathiak K
    J Neurosci; 2011 Sep; 31(38):13635-43. PubMed ID: 21940454
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Common neural substrates for response selection across modalities and mapping paradigms.
    Jiang Y; Kanwisher N
    J Cogn Neurosci; 2003 Nov; 15(8):1080-94. PubMed ID: 14709228
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Event-related fMRI of auditory and visual oddball tasks.
    Stevens AA; Skudlarski P; Gatenby JC; Gore JC
    Magn Reson Imaging; 2000 Jun; 18(5):495-502. PubMed ID: 10913710
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Perception of surface stickiness in different sensory modalities: an functional MRI study.
    So Y; Kim SP; Kim J
    Neuroreport; 2020 Mar; 31(5):411-415. PubMed ID: 32091480
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.