These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 31536886)

  • 41. Reconstructing Genetic Regulatory Networks Using Two-Step Algorithms with the Differential Equation Models of Neural Networks.
    Chen CK
    Interdiscip Sci; 2018 Dec; 10(4):823-835. PubMed ID: 28748400
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Detection of Escherichia coli in biofilms from pipe samples and coupons in drinking water distribution networks.
    Juhna T; Birzniece D; Larsson S; Zulenkovs D; Sharipo A; Azevedo NF; Ménard-Szczebara F; Castagnet S; Féliers C; Keevil CW
    Appl Environ Microbiol; 2007 Nov; 73(22):7456-64. PubMed ID: 17720845
    [TBL] [Abstract][Full Text] [Related]  

  • 43. CropDeep: The Crop Vision Dataset for Deep-Learning-Based Classification and Detection in Precision Agriculture.
    Zheng YY; Kong JL; Jin XB; Wang XY; Zuo M
    Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30832283
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model.
    Wang S; Sun S; Li Z; Zhang R; Xu J
    PLoS Comput Biol; 2017 Jan; 13(1):e1005324. PubMed ID: 28056090
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Melanoma segmentation based on deep learning.
    Zhang X
    Comput Assist Surg (Abingdon); 2017 Dec; 22(sup1):267-277. PubMed ID: 29043858
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Deep learning and SURF for automated classification and detection of calcaneus fractures in CT images.
    Pranata YD; Wang KC; Wang JC; Idram I; Lai JY; Liu JW; Hsieh IH
    Comput Methods Programs Biomed; 2019 Apr; 171():27-37. PubMed ID: 30902248
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Large-scale Exploration of Neuronal Morphologies Using Deep Learning and Augmented Reality.
    Li Z; Butler E; Li K; Lu A; Ji S; Zhang S
    Neuroinformatics; 2018 Oct; 16(3-4):339-349. PubMed ID: 29435954
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Pollutant intrusion modeling in water distribution networks using artificial neural networks.
    Singh RM; Rahul AI
    J Environ Sci Eng; 2011 Jul; 53(3):245-56. PubMed ID: 23029924
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Visualizing complex feature interactions and feature sharing in genomic deep neural networks.
    Liu G; Zeng H; Gifford DK
    BMC Bioinformatics; 2019 Jul; 20(1):401. PubMed ID: 31324140
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A sparse deep learning model for privacy attack on remote sensing images.
    Wang EK; Zhe N; Li YP; Liang ZD; Zhang X; Yu JT; Ye YM
    Math Biosci Eng; 2019 Feb; 16(3):1300-1312. PubMed ID: 30947421
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Burst detection in district metering areas using a data driven clustering algorithm.
    Wu Y; Liu S; Wu X; Liu Y; Guan Y
    Water Res; 2016 Sep; 100():28-37. PubMed ID: 27176651
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Towards improving diagnosis of skin diseases by combining deep neural network and human knowledge.
    Zhang X; Wang S; Liu J; Tao C
    BMC Med Inform Decis Mak; 2018 Jul; 18(Suppl 2):59. PubMed ID: 30066649
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Prediction of RNA-protein sequence and structure binding preferences using deep convolutional and recurrent neural networks.
    Pan X; Rijnbeek P; Yan J; Shen HB
    BMC Genomics; 2018 Jul; 19(1):511. PubMed ID: 29970003
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Data-driven application of MEMS-based accelerometers for leak detection in water distribution networks.
    Tariq S; Bakhtawar B; Zayed T
    Sci Total Environ; 2022 Feb; 809():151110. PubMed ID: 34688733
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Study on the automatic parameters identification of water pipe network model].
    Jia HF; Zhao QF
    Huan Jing Ke Xue; 2010 Jan; 31(1):82-7. PubMed ID: 20329520
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A novel end-to-end classifier using domain transferred deep convolutional neural networks for biomedical images.
    Pang S; Yu Z; Orgun MA
    Comput Methods Programs Biomed; 2017 Mar; 140():283-293. PubMed ID: 28254085
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Review of research on detection and tracking of minimally invasive surgical tools based on deep learning].
    Liu Y; Zhao Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2019 Oct; 36(5):870-878. PubMed ID: 31631638
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Deep ECGNet: An Optimal Deep Learning Framework for Monitoring Mental Stress Using Ultra Short-Term ECG Signals.
    Hwang B; You J; Vaessen T; Myin-Germeys I; Park C; Zhang BT
    Telemed J E Health; 2018 Oct; 24(10):753-772. PubMed ID: 29420125
    [TBL] [Abstract][Full Text] [Related]  

  • 59. DeepACLSTM: deep asymmetric convolutional long short-term memory neural models for protein secondary structure prediction.
    Guo Y; Li W; Wang B; Liu H; Zhou D
    BMC Bioinformatics; 2019 Jun; 20(1):341. PubMed ID: 31208331
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Multi-Organ Plant Classification Based on Convolutional and Recurrent Neural Networks.
    Lee SH; Chan CS; Remagnino P
    IEEE Trans Image Process; 2018 Sep; 27(9):4287-4301. PubMed ID: 29870348
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.