These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 31536948)
1. Correlation between the T1 copper reduction potential and catalytic activity of a small laccase. Olbrich AC; Schild JN; Urlacher VB J Inorg Biochem; 2019 Dec; 201():110843. PubMed ID: 31536948 [TBL] [Abstract][Full Text] [Related]
2. Structural and redox properties of the small laccase Ssl1 from Streptomyces sviceus. Gunne M; Höppner A; Hagedoorn PL; Urlacher VB FEBS J; 2014 Sep; 281(18):4307-18. PubMed ID: 24548692 [TBL] [Abstract][Full Text] [Related]
3. Laccase versus laccase-like multi-copper oxidase: a comparative study of similar enzymes with diverse substrate spectra. Reiss R; Ihssen J; Richter M; Eichhorn E; Schilling B; Thöny-Meyer L PLoS One; 2013; 8(6):e65633. PubMed ID: 23755261 [TBL] [Abstract][Full Text] [Related]
4. Effect of the L499M mutation of the ascomycetous Botrytis aclada laccase on redox potential and catalytic properties. Osipov E; Polyakov K; Kittl R; Shleev S; Dorovatovsky P; Tikhonova T; Hann S; Ludwig R; Popov V Acta Crystallogr D Biol Crystallogr; 2014 Nov; 70(Pt 11):2913-23. PubMed ID: 25372682 [TBL] [Abstract][Full Text] [Related]
5. An assessment of the relative contributions of redox and steric issues to laccase specificity towards putative substrates. Tadesse MA; D'Annibale A; Galli C; Gentili P; Sergi F Org Biomol Chem; 2008 Mar; 6(5):868-78. PubMed ID: 18292878 [TBL] [Abstract][Full Text] [Related]
6. Mutations in the coordination spheres of T1 Cu affect Cu Clément R; Wang X; Biaso F; Ilbert M; Mazurenko I; Lojou E Biochimie; 2021 Mar; 182():228-237. PubMed ID: 33535124 [TBL] [Abstract][Full Text] [Related]
7. Functional substitution of domain 3 (T1 copper center) of a novel laccase with Cu ions. Gupta V; Balda S; Gupta N; Capalash N; Sharma P Int J Biol Macromol; 2019 Feb; 123():1052-1061. PubMed ID: 30465829 [TBL] [Abstract][Full Text] [Related]
8. Four second-sphere residues of Thermus thermophilus SG0.5JP17-16 laccase tune the catalysis by hydrogen-bonding networks. Liu H; Zhu Y; Yang X; Lin Y Appl Microbiol Biotechnol; 2018 May; 102(9):4049-4061. PubMed ID: 29516147 [TBL] [Abstract][Full Text] [Related]
9. The effect of mutations near the T1 copper site on the biochemical characteristics of the small laccase from Streptomyces coelicolor A3(2). Prins A; Kleinsmidt L; Khan N; Kirby B; Kudanga T; Vollmer J; Pleiss J; Burton S; Le Roes-Hill M Enzyme Microb Technol; 2015 Jan; 68():23-32. PubMed ID: 25435502 [TBL] [Abstract][Full Text] [Related]
10. Characterization of the alkaline laccase Ssl1 from Streptomyces sviceus with unusual properties discovered by genome mining. Gunne M; Urlacher VB PLoS One; 2012; 7(12):e52360. PubMed ID: 23285009 [TBL] [Abstract][Full Text] [Related]
11. Axial bonds at the T1 Cu site of Thermus thermophilus SG0.5JP17-16 laccase influence enzymatic properties. Zhu Y; Zhang Y; Zhan J; Lin Y; Yang X FEBS Open Bio; 2019 May; 9(5):986-995. PubMed ID: 30964606 [TBL] [Abstract][Full Text] [Related]
12. Intramolecular electron transfer in laccases. Farver O; Wherland S; Koroleva O; Loginov DS; Pecht I FEBS J; 2011 Sep; 278(18):3463-71. PubMed ID: 21790996 [TBL] [Abstract][Full Text] [Related]
13. Elucidation of the crystal structure of Coriolopsis caperata laccase: restoration of the structure and activity of the native enzyme from the T2-depleted form by copper ions. Glazunova OA; Polyakov KM; Fedorova TV; Dorovatovskii PV; Koroleva OV Acta Crystallogr D Biol Crystallogr; 2015 Apr; 71(Pt 4):854-61. PubMed ID: 25849396 [TBL] [Abstract][Full Text] [Related]
14. Perturbations of the T1 copper site in the CotA laccase from Bacillus subtilis: structural, biochemical, enzymatic and stability studies. Durão P; Bento I; Fernandes AT; Melo EP; Lindley PF; Martins LO J Biol Inorg Chem; 2006 Jun; 11(4):514-26. PubMed ID: 16680453 [TBL] [Abstract][Full Text] [Related]
15. Intramolecular Electron Transfer in the Bacterial Two-Domain Multicopper Oxidase mgLAC. Wherland S; Miyazaki K; Pecht I Biochemistry; 2016 May; 55(21):2960-6. PubMed ID: 27126506 [TBL] [Abstract][Full Text] [Related]
16. Reduction thermodynamics of the T1 Cu site in plant and fungal laccases. Battistuzzi G; Bellei M; Leonardi A; Pierattelli R; De Candia A; Vila AJ; Sola M J Biol Inorg Chem; 2005 Dec; 10(8):867-73. PubMed ID: 16231129 [TBL] [Abstract][Full Text] [Related]
17. Structure-function study of two new middle-redox potential laccases from basidiomycetes Antrodiella faginea and Steccherinum murashkinskyi. Glazunova OA; Polyakov KM; Moiseenko KV; Kurzeev SA; Fedorova TV Int J Biol Macromol; 2018 Oct; 118(Pt A):406-418. PubMed ID: 29890251 [TBL] [Abstract][Full Text] [Related]
18. Direct electron transfer to a metagenome-derived laccase fused to affinity tags near the electroactive copper site. Tsujimura S; Asahi M; Goda-Tsutsumi M; Shirai O; Kano K; Miyazaki K Phys Chem Chem Phys; 2013 Dec; 15(47):20585-9. PubMed ID: 24185896 [TBL] [Abstract][Full Text] [Related]
19. Basic and applied features of multicopper oxidases, CueO, bilirubin oxidase, and laccase. Sakurai T; Kataoka K Chem Rec; 2007; 7(4):220-9. PubMed ID: 17663447 [TBL] [Abstract][Full Text] [Related]
20. Proximal mutations at the type 1 copper site of CotA laccase: spectroscopic, redox, kinetic and structural characterization of I494A and L386A mutants. Durão P; Chen Z; Silva CS; Soares CM; Pereira MM; Todorovic S; Hildebrandt P; Bento I; Lindley PF; Martins LO Biochem J; 2008 Jun; 412(2):339-46. PubMed ID: 18307408 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]