BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 31537058)

  • 1. Thiol-Mediated Multidentate Phosphorylcholine as a Zwitterionic Ligand for Stabilizing Biocompatible Gold Nanoparticles.
    Zhou W; Ling L; Du Y; He W; Xia Q; Yao C; Li X
    Langmuir; 2019 Oct; 35(40):13031-13039. PubMed ID: 31537058
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multidentate zwitterionic chitosan oligosaccharide modified gold nanoparticles: stability, biocompatibility and cell interactions.
    Liu X; Huang H; Liu G; Zhou W; Chen Y; Jin Q; Ji J
    Nanoscale; 2013 May; 5(9):3982-91. PubMed ID: 23546384
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multifunctional compact zwitterionic ligands for preparing robust biocompatible semiconductor quantum dots and gold nanoparticles.
    Susumu K; Oh E; Delehanty JB; Blanco-Canosa JB; Johnson BJ; Jain V; Hervey WJ; Algar WR; Boeneman K; Dawson PE; Medintz IL
    J Am Chem Soc; 2011 Jun; 133(24):9480-96. PubMed ID: 21612225
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of ligand composition on the in vivo fate of multidentate poly(ethylene glycol) modified gold nanoparticles.
    Liu X; Huang N; Wang H; Li H; Jin Q; Ji J
    Biomaterials; 2013 Nov; 34(33):8370-81. PubMed ID: 23932246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mixed charged zwitterionic self-assembled monolayers as a facile way to stabilize large gold nanoparticles.
    Liu X; Huang H; Jin Q; Ji J
    Langmuir; 2011 May; 27(9):5242-51. PubMed ID: 21476529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gold nanoparticles coated with polysarcosine brushes to enhance their colloidal stability and circulation time in vivo.
    Chen Y; Xu Z; Zhu D; Tao X; Gao Y; Zhu H; Mao Z; Ling J
    J Colloid Interface Sci; 2016 Dec; 483():201-210. PubMed ID: 27552428
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of thiol-containing polyethylene glycol (thiol-PEG) in the modification process of gold nanoparticles (AuNPs): stabilizer or coagulant?
    Wang W; Wei QQ; Wang J; Wang BC; Zhang SH; Yuan Z
    J Colloid Interface Sci; 2013 Aug; 404():223-9. PubMed ID: 23711661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of the spacer structure on the stability of gold nanoparticles functionalized with monodentate thiolated poly(ethylene glycol) ligands.
    Schulz F; Vossmeyer T; Bastús NG; Weller H
    Langmuir; 2013 Aug; 29(31):9897-908. PubMed ID: 23829571
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Curcuma mangga-Mediated Synthesis of Gold Nanoparticles: Characterization, Stability, Cytotoxicity, and Blood Compatibility.
    Foo YY; Periasamy V; Kiew LV; Kumar GG; Malek SNA
    Nanomaterials (Basel); 2017 May; 7(6):. PubMed ID: 28554995
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein-coated pH-responsive gold nanoparticles: Microwave-assisted synthesis and surface charge-dependent anticancer activity.
    Joseph D; Tyagi N; Geckeler C; E Geckeler K
    Beilstein J Nanotechnol; 2014; 5():1452-62. PubMed ID: 25247128
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of 4-(dimethylamino)pyridine propylthioacetate coated gold nanoparticles and their antibacterial and photophysical activity.
    Anwar A; Khalid S; Perveen S; Ahmed S; Siddiqui R; Khan NA; Shah MR
    J Nanobiotechnology; 2018 Jan; 16(1):6. PubMed ID: 29378569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved stability of "naked" gold nanoparticles enabled by in situ coating with mono and multivalent thiol PEG ligands.
    Zopes D; Stein B; Mathur S; Graf C
    Langmuir; 2013 Sep; 29(36):11217-26. PubMed ID: 23906521
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly stable positively charged dendron-encapsulated gold nanoparticles.
    Cho TJ; MacCuspie RI; Gigault J; Gorham JM; Elliott JT; Hackley VA
    Langmuir; 2014 Apr; 30(13):3883-93. PubMed ID: 24625049
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recyclable Colorimetric Detection of Trivalent Cations in Aqueous Media Using Zwitterionic Gold Nanoparticles.
    Zheng W; Li H; Chen W; Ji J; Jiang X
    Anal Chem; 2016 Apr; 88(7):4140-6. PubMed ID: 26958996
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and In Vitro Evaluation of Gold Nanoparticles Functionalized with Thiol Ligands for Robust Radiolabeling with
    Apostolopoulou A; Chiotellis A; Salvanou EA; Makrypidi K; Tsoukalas C; Kapiris F; Paravatou-Petsotas M; Papadopoulos M; Pirmettis IC; Koźmiński P; Bouziotis P
    Nanomaterials (Basel); 2021 Sep; 11(9):. PubMed ID: 34578721
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface and size effects on cell interaction of gold nanoparticles with both phagocytic and nonphagocytic cells.
    Liu X; Huang N; Li H; Jin Q; Ji J
    Langmuir; 2013 Jul; 29(29):9138-48. PubMed ID: 23815604
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineered zwitterionic phosphorylcholine monolayers for elucidating multivalent binding kinetics of C-reactive protein.
    Goda T; Miyahara Y
    Acta Biomater; 2016 Aug; 40():46-53. PubMed ID: 26873368
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface-ligand effect on radiosensitization of ultrasmall luminescent gold nanoparticles.
    Jiang X; Du B; Yu M; Jia X; Zheng J
    J Innov Opt Health Sci; 2016 Jul; 9(4):16420031-16420038. PubMed ID: 29034008
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding the Cellular Uptake of pH-Responsive Zwitterionic Gold Nanoparticles: A Computer Simulation Study.
    Quan X; Zhao D; Li L; Zhou J
    Langmuir; 2017 Dec; 33(50):14480-14489. PubMed ID: 29166558
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional, Degradable Zwitterionic Polyphosphoesters as Biocompatible Coating Materials for Metal Nanostructures.
    Li R; Elsabahy M; Song Y; Wang H; Su L; Letteri RA; Khan S; Heo GS; Sun G; Liu Y; Wooley KL
    Langmuir; 2019 Feb; 35(5):1503-1512. PubMed ID: 30346776
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.