BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 31537832)

  • 1. Atroposelective antibodies as a designed protein scaffold for artificial metalloenzymes.
    Adachi T; Harada A; Yamaguchi H
    Sci Rep; 2019 Sep; 9(1):13551. PubMed ID: 31537832
    [TBL] [Abstract][Full Text] [Related]  

  • 2. LmrR: A Privileged Scaffold for Artificial Metalloenzymes.
    Roelfes G
    Acc Chem Res; 2019 Mar; 52(3):545-556. PubMed ID: 30794372
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multidrug resistance regulators (MDRs) as scaffolds for the design of artificial metalloenzymes.
    Bersellini M; Roelfes G
    Org Biomol Chem; 2017 Apr; 15(14):3069-3073. PubMed ID: 28321451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards the Evolution of Artificial Metalloenzymes-A Protein Engineer's Perspective.
    Markel U; Sauer DF; Schiffels J; Okuda J; Schwaneberg U
    Angew Chem Int Ed Engl; 2019 Mar; 58(14):4454-4464. PubMed ID: 30431222
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Beyond the Second Coordination Sphere: Engineering Dirhodium Artificial Metalloenzymes To Enable Protein Control of Transition Metal Catalysis.
    Lewis JC
    Acc Chem Res; 2019 Mar; 52(3):576-584. PubMed ID: 30830755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly Efficient Cyclic Dinucleotide Based Artificial Metalloribozymes for Enantioselective Friedel-Crafts Reactions in Water.
    Wang C; Hao M; Qi Q; Dang J; Dong X; Lv S; Xiong L; Gao H; Jia G; Chen Y; Hartig JS; Li C
    Angew Chem Int Ed Engl; 2020 Feb; 59(9):3444-3449. PubMed ID: 31825550
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Repurposing metalloproteins as mimics of natural metalloenzymes for small-molecule activation.
    DiPrimio DJ; Holland PL
    J Inorg Biochem; 2021 Jun; 219():111430. PubMed ID: 33873051
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In Vivo Assembly of Artificial Metalloenzymes and Application in Whole-Cell Biocatalysis*.
    Chordia S; Narasimhan S; Lucini Paioni A; Baldus M; Roelfes G
    Angew Chem Int Ed Engl; 2021 Mar; 60(11):5913-5920. PubMed ID: 33428816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Directed evolution of artificial metalloenzymes for in vivo metathesis.
    Jeschek M; Reuter R; Heinisch T; Trindler C; Klehr J; Panke S; Ward TR
    Nature; 2016 Sep; 537(7622):661-665. PubMed ID: 27571282
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rational Design of Artificial Metalloproteins and Metalloenzymes with Metal Clusters.
    Lin YW
    Molecules; 2019 Jul; 24(15):. PubMed ID: 31362341
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemogenetic protein engineering: an efficient tool for the optimization of artificial metalloenzymes.
    Pordea A; Ward TR
    Chem Commun (Camb); 2008 Sep; (36):4239-49. PubMed ID: 18802535
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective C-H bond functionalization using repurposed or artificial metalloenzymes.
    Upp DM; Lewis JC
    Curr Opin Chem Biol; 2017 Apr; 37():48-55. PubMed ID: 28135654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Directed Evolution of Artificial Metalloenzymes: A Universal Means to Tune the Selectivity of Transition Metal Catalysts?
    Reetz MT
    Acc Chem Res; 2019 Feb; 52(2):336-344. PubMed ID: 30689339
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Artificial Metalloenzymes based on TetR Proteins and Cu(II) for Enantioselective Friedel-Crafts Alkylation Reactions.
    Gutiérrez de Souza C; Bersellini M; Roelfes G
    ChemCatChem; 2020 Jun; 12(12):3190-3194. PubMed ID: 32612714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Artificial Metalloenzymes: From Selective Chemical Transformations to Biochemical Applications.
    Himiyama T; Okamoto Y
    Molecules; 2020 Jun; 25(13):. PubMed ID: 32629938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Supramolecular Assembly of Artificial Metalloenzymes Based on the Dimeric Protein LmrR as Promiscuous Scaffold.
    Bos J; Browne WR; Driessen AJ; Roelfes G
    J Am Chem Soc; 2015 Aug; 137(31):9796-9. PubMed ID: 26214343
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Artificial metalloenzymes based on the biotin-avidin technology: enantioselective catalysis and beyond.
    Ward TR
    Acc Chem Res; 2011 Jan; 44(1):47-57. PubMed ID: 20949947
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multicore Artificial Metalloenzymes Derived from Acylated Proteins as Catalysts for the Enantioselective Dihydroxylation and Epoxidation of Styrene Derivatives.
    Leurs M; Dorn B; Wilhelm S; Manisegaran M; Tiller JC
    Chemistry; 2018 Jul; 24(42):10859-10867. PubMed ID: 29808506
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metallopeptide catalysts and artificial metalloenzymes containing unnatural amino acids.
    Lewis JC
    Curr Opin Chem Biol; 2015 Apr; 25():27-35. PubMed ID: 25545848
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Counter propagation artificial neural networks modeling of an enantioselectivity of artificial metalloenzymes.
    Mazurek S; Ward TR; Novic M
    Mol Divers; 2007; 11(3-4):141-52. PubMed ID: 18317943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.