These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 31537864)

  • 1. Photopharmacologic Vision Restoration Reduces Pathological Rhythmic Field Potentials in Blind Mouse Retina.
    Hüll K; Benster T; Manookin MB; Trauner D; Van Gelder RN; Laprell L
    Sci Rep; 2019 Sep; 9(1):13561. PubMed ID: 31537864
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How Azobenzene Photoswitches Restore Visual Responses to the Blind Retina.
    Tochitsky I; Helft Z; Meseguer V; Fletcher RB; Vessey KA; Telias M; Denlinger B; Malis J; Fletcher EL; Kramer RH
    Neuron; 2016 Oct; 92(1):100-113. PubMed ID: 27667006
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photochemical approaches to vision restoration.
    Van Gelder RN
    Vision Res; 2015 Jun; 111(Pt B):134-41. PubMed ID: 25680758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Restoration of visual function by expression of a light-gated mammalian ion channel in retinal ganglion cells or ON-bipolar cells.
    Gaub BM; Berry MH; Holt AE; Reiner A; Kienzler MA; Dolgova N; Nikonov S; Aguirre GD; Beltran WA; Flannery JG; Isacoff EY
    Proc Natl Acad Sci U S A; 2014 Dec; 111(51):E5574-83. PubMed ID: 25489083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rhythmic ganglion cell activity in bleached and blind adult mouse retinas.
    Menzler J; Channappa L; Zeck G
    PLoS One; 2014; 9(8):e106047. PubMed ID: 25153888
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Restoring visual function to the blind retina with a potent, safe and long-lasting photoswitch.
    Tochitsky I; Trautman J; Gallerani N; Malis JG; Kramer RH
    Sci Rep; 2017 Apr; 7():45487. PubMed ID: 28406473
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The impact of inhibitory mechanisms in the inner retina on spatial tuning of RGCs.
    Huang JY; Protti DA
    Sci Rep; 2016 Feb; 6():21966. PubMed ID: 26905860
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photochemical restoration of visual responses in blind mice.
    Polosukhina A; Litt J; Tochitsky I; Nemargut J; Sychev Y; De Kouchkovsky I; Huang T; Borges K; Trauner D; Van Gelder RN; Kramer RH
    Neuron; 2012 Jul; 75(2):271-82. PubMed ID: 22841312
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photopharmacological control of bipolar cells restores visual function in blind mice.
    Laprell L; Tochitsky I; Kaur K; Manookin MB; Stein M; Barber DM; Schön C; Michalakis S; Biel M; Kramer RH; Sumser MP; Trauner D; Van Gelder RN
    J Clin Invest; 2017 Jun; 127(7):2598-2611. PubMed ID: 28581442
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aberrant Activity in Degenerated Retinas Revealed by Electrical Imaging.
    Zeck G
    Front Cell Neurosci; 2016; 10():25. PubMed ID: 26903810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activation of ganglion cells in wild-type and P23H rat retinas with a small subretinal electrode.
    Jensen RJ
    Exp Eye Res; 2012 Jun; 99():71-7. PubMed ID: 22542904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of Antipsychotic Drugs Haloperidol and Clozapine on Visual Responses of Retinal Ganglion Cells in a Rat Model of Retinitis Pigmentosa.
    Jensen RJ
    J Ocul Pharmacol Ther; 2016 Dec; 32(10):685-690. PubMed ID: 27788033
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Blocking GABA(C) receptors increases light responsiveness of retinal ganglion cells in a rat model of retinitis pigmentosa.
    Jensen RJ
    Exp Eye Res; 2012 Dec; 105():21-6. PubMed ID: 23085337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiological and morphological characterization of ganglion cells in the salamander retina.
    Wang J; Jacoby R; Wu SM
    Vision Res; 2016 Feb; 119():60-72. PubMed ID: 26731645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective synaptic connections in the retinal pathway for night vision.
    Beaudoin DL; Kupershtok M; Demb JB
    J Comp Neurol; 2019 Jan; 527(1):117-132. PubMed ID: 28856684
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spontaneous oscillatory activity of starburst amacrine cells in the mouse retina.
    Petit-Jacques J; Völgyi B; Rudy B; Bloomfield S
    J Neurophysiol; 2005 Sep; 94(3):1770-80. PubMed ID: 15917322
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Synaptic and Morphological Basis of Orientation Selectivity in a Polyaxonal Amacrine Cell of the Rabbit Retina.
    Murphy-Baum BL; Taylor WR
    J Neurosci; 2015 Sep; 35(39):13336-50. PubMed ID: 26424882
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Retinoic acid inhibitors mitigate vision loss in a mouse model of retinal degeneration.
    Telias M; Sit KK; Frozenfar D; Smith B; Misra A; Goard MJ; Kramer RH
    Sci Adv; 2022 Mar; 8(11):eabm4643. PubMed ID: 35302843
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Subretinal electrical stimulation reveals intact network activity in the blind mouse retina.
    Stutzki H; Helmhold F; Eickenscheidt M; Zeck G
    J Neurophysiol; 2016 Oct; 116(4):1684-1693. PubMed ID: 27486110
    [TBL] [Abstract][Full Text] [Related]  

  • 20. M1 ipRGCs Influence Visual Function through Retrograde Signaling in the Retina.
    Prigge CL; Yeh PT; Liou NF; Lee CC; You SF; Liu LL; McNeill DS; Chew KS; Hattar S; Chen SK; Zhang DQ
    J Neurosci; 2016 Jul; 36(27):7184-97. PubMed ID: 27383593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.