These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 31538374)

  • 1. "Lattice Strain Matching"-Enabled Nanocomposite Design to Harness the Exceptional Mechanical Properties of Nanomaterials in Bulk Forms.
    Zhang J; Liu Y; Cui L; Hao S; Jiang D; Yu K; Mao S; Ren Y; Yang H
    Adv Mater; 2020 May; 32(18):e1904387. PubMed ID: 31538374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual Phase Synergy Enabled Large Elastic Strains of Nanoinclusions in a Dislocation Slip Matrix Composite.
    Zhang J; Hao S; Jiang D; Huan Y; Cui L; Liu Y; Ren Y; Yang H
    Nano Lett; 2018 May; 18(5):2976-2983. PubMed ID: 29714487
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Revealing ultralarge and localized elastic lattice strains in Nb nanowires embedded in NiTi matrix.
    Zang K; Mao S; Cai J; Liu Y; Li H; Hao S; Jiang D; Cui L
    Sci Rep; 2015 Dec; 5():17530. PubMed ID: 26625854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A transforming metal nanocomposite with large elastic strain, low modulus, and high strength.
    Hao S; Cui L; Jiang D; Han X; Ren Y; Jiang J; Liu Y; Liu Z; Mao S; Wang Y; Li Y; Ren X; Ding X; Wang S; Yu C; Shi X; Du M; Yang F; Zheng Y; Zhang Z; Li X; Brown DE; Li J
    Science; 2013 Mar; 339(6124):1191-4. PubMed ID: 23471404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Locality and rapidity of the ultra-large elastic deformation of Nb nanowires in a NiTi phase-transforming matrix.
    Wang S; Cui L; Hao S; Jiang D; Liu Y; Liu Z; Mao S; Han X; Ren Y
    Sci Rep; 2014 Oct; 4():6753. PubMed ID: 25341619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Factors influencing the elastic moduli, reversible strains and hysteresis loops in martensitic Ti-Nb alloys.
    Bönisch M; Calin M; van Humbeeck J; Skrotzki W; Eckert J
    Mater Sci Eng C Mater Biol Appl; 2015 Mar; 48():511-20. PubMed ID: 25579952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toughening Ceramic-Based Composites by Homogenizing the Lattice Strain at Phase Boundaries.
    Jiang W; Lu H; Chen J; Luo L; Liu X; Wang H; Song X
    ACS Appl Mater Interfaces; 2023 Apr; 15(15):19604-19615. PubMed ID: 37022998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Achieving large linear elasticity and high strength in bulk nanocompsite via synergistic effect.
    Hao S; Cui L; Guo F; Liu Y; Shi X; Jiang D; Brown DE; Ren Y
    Sci Rep; 2015 Mar; 5():8892. PubMed ID: 25749549
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Achieving Superior Two-Way Actuation by the Stress-Coupling of Nanoribbons and Nanocrystalline Shape Memory Alloy.
    Hao S; Liu Y; Ren Y; Jiang D; Yang F; Cong D; Wang Y; Cui L
    ACS Appl Mater Interfaces; 2016 Jun; 8(25):16310-6. PubMed ID: 27276656
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Local strain evolution due to athermal γ→ε martensitic transformation in biomedical CoCrMo alloys.
    Yamanaka K; Mori M; Koizumi Y; Chiba A
    J Mech Behav Biomed Mater; 2014 Apr; 32():52-61. PubMed ID: 24412717
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exceptional Resilience of Small-Scale Au
    Ni X; Greer JR; Bhattacharya K; James RD; Chen X
    Nano Lett; 2016 Dec; 16(12):7621-7625. PubMed ID: 27960490
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shape memory and superelastic ceramics at small scales.
    Lai A; Du Z; Gan CL; Schuh CA
    Science; 2013 Sep; 341(6153):1505-8. PubMed ID: 24072920
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Origin of high strength, low modulus superelasticity in nanowire-shape memory alloy composites.
    Zhang X; Zong H; Cui L; Fan X; Ding X; Sun J
    Sci Rep; 2017 Apr; 7():46360. PubMed ID: 28402321
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Retaining Large and Adjustable Elastic Strains of Kilogram-Scale Nb Nanowires.
    Hao S; Cui L; Wang H; Jiang D; Liu Y; Yan J; Ren Y; Han X; Brown DE; Li J
    ACS Appl Mater Interfaces; 2016 Feb; 8(5):2917-22. PubMed ID: 26745016
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elastic softening of β-type Ti-Nb alloys by indium (In) additions.
    Calin M; Helth A; Gutierrez Moreno JJ; Bönisch M; Brackmann V; Giebeler L; Gemming T; Lekka CE; Gebert A; Schnettler R; Eckert J
    J Mech Behav Biomed Mater; 2014 Nov; 39():162-74. PubMed ID: 25128870
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Linking a completely three-dimensional nanostrain to a structural transformation eigenstrain.
    Tirry W; Schryvers D
    Nat Mater; 2009 Sep; 8(9):752-7. PubMed ID: 19543276
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tuning strain-induced γ-to-ε martensitic transformation of biomedical Co-Cr-Mo alloys by introducing parent phase lattice defects.
    Mori M; Yamanaka K; Sato S; Tsubaki S; Satoh K; Kumagai M; Imafuku M; Shobu T; Chiba A
    J Mech Behav Biomed Mater; 2019 Feb; 90():523-529. PubMed ID: 30458336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alternate stresses and temperature variation as factors of influence of ultrasonic vibration on mechanical and functional properties of shape memory alloys.
    Belyaev S; Volkov A; Resnina N
    Ultrasonics; 2014 Jan; 54(1):84-9. PubMed ID: 23870387
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystallographic Structure Analysis of a Ti-Ta Thin Film Materials Library Fabricated by Combinatorial Magnetron Sputtering.
    Kadletz PM; Motemani Y; Iannotta J; Salomon S; Khare C; Grossmann L; Maier HJ; Ludwig A; Schmahl WW
    ACS Comb Sci; 2018 Mar; 20(3):137-150. PubMed ID: 29356502
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of Zr Content on Phase Stability, Deformation Behavior, and Young's Modulus in Ti-Nb-Zr Alloys.
    Kim KM; Kim HY; Miyazaki S
    Materials (Basel); 2020 Jan; 13(2):. PubMed ID: 31963854
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.