BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 31538469)

  • 1. A Transient Intermediate Populated in Prion Folding Leads to Domain Swapping.
    Mondal B; Reddy G
    Biochemistry; 2020 Jan; 59(1):114-124. PubMed ID: 31538469
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and Structural Characterization of the Precursor Conformation of the Prion Protein which Directly Initiates Misfolding and Oligomerization.
    Moulick R; Udgaonkar JB
    J Mol Biol; 2017 Mar; 429(6):886-899. PubMed ID: 28147229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermodynamic characterization of the unfolding of the prion protein.
    Moulick R; Udgaonkar JB
    Biophys J; 2014 Jan; 106(2):410-20. PubMed ID: 24461016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of Unfolding of Human Prion Protein.
    Singh RK; Chamachi NG; Chakrabarty S; Mukherjee A
    J Phys Chem B; 2017 Jan; 121(3):550-564. PubMed ID: 28030950
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pathogenic Mutations within the Disordered Palindromic Region of the Prion Protein Induce Structure Therein and Accelerate the Formation of Misfolded Oligomers.
    Sabareesan AT; Udgaonkar JB
    J Mol Biol; 2016 Oct; 428(20):3935-3947. PubMed ID: 27545411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature-Induced Misfolding in Prion Protein: Evidence of Multiple Partially Disordered States Stabilized by Non-Native Hydrogen Bonds.
    Chamachi NG; Chakrabarty S
    Biochemistry; 2017 Feb; 56(6):833-844. PubMed ID: 28102071
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Replica Exchange Molecular Dynamics Study of Dimerization in Prion Protein: Multiple Modes of Interaction and Stabilization.
    Chamachi NG; Chakrabarty S
    J Phys Chem B; 2016 Aug; 120(30):7332-45. PubMed ID: 27390876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Double Domain Swapping in Human γC and γD Crystallin Drives Early Stages of Aggregation.
    Mondal B; Nagesh J; Reddy G
    J Phys Chem B; 2021 Feb; 125(7):1705-1715. PubMed ID: 33566611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of Two Early Folding Stage Prion Non-Local Contacts Suggested to Serve as Key Steps in Directing the Final Fold to Be Either Native or Pathogenic.
    Bergasa-Caceres F; Rabitz HA
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445324
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insights into structural properties of denatured human prion 121-230 at melting temperature studied by replica exchange molecular dynamics.
    Tang JL; Wu PJ; Wang SC; Lee CI
    J Phys Chem B; 2012 Mar; 116(10):3305-12. PubMed ID: 22339436
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing the early stages of prion protein (PrP) aggregation with atomistic molecular dynamics simulations.
    Collu F; Spiga E; Chakroun N; Rezaei H; Fraternali F
    Chem Commun (Camb); 2018 Jul; 54(57):8007-8010. PubMed ID: 29967919
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Pathogenic Mutation T182A Converts the Prion Protein into a Molten Globule-like Conformation Whose Misfolding to Oligomers but Not to Fibrils Is Drastically Accelerated.
    Singh J; Udgaonkar JB
    Biochemistry; 2016 Jan; 55(3):459-69. PubMed ID: 26713717
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Simple Model of Protein Domain Swapping in Crowded Cellular Environments.
    Woodard JC; Dunatunga S; Shakhnovich EI
    Biophys J; 2016 Jun; 110(11):2367-2376. PubMed ID: 27276255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutations of evolutionarily conserved aromatic residues suggest that misfolding of the mouse prion protein may commence in multiple ways.
    Pal S; Udgaonkar JB
    J Neurochem; 2023 Dec; 167(5):696-710. PubMed ID: 37941487
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Folding of the yeast prion protein Ure2: kinetic evidence for folding and unfolding intermediates.
    Galani D; Fersht AR; Perrett S
    J Mol Biol; 2002 Jan; 315(2):213-27. PubMed ID: 11779240
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural mechanisms of oligomer and amyloid fibril formation by the prion protein.
    Sengupta I; Udgaonkar JB
    Chem Commun (Camb); 2018 Jun; 54(49):6230-6242. PubMed ID: 29789820
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterizing the denatured state of human prion 121-230.
    Lee CI; Chang NY
    Biophys Chem; 2010 Sep; 151(1-2):86-90. PubMed ID: 20627399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ruggedness in the Free Energy Landscape Dictates Misfolding of the Prion Protein.
    Moulick R; Goluguri RR; Udgaonkar JB
    J Mol Biol; 2019 Feb; 431(4):807-824. PubMed ID: 30611749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dimer domain swapping versus monomer folding in apo-myoglobin studied by molecular simulations.
    Ono K; Ito M; Hirota S; Takada S
    Phys Chem Chem Phys; 2015 Feb; 17(7):5006-13. PubMed ID: 25591933
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolutionarily Conserved Proline Residues Impede the Misfolding of the Mouse Prion Protein by Destabilizing an Aggregation-competent Partially Unfolded Form.
    Pal S; Udgaonkar JB
    J Mol Biol; 2022 Dec; 434(23):167854. PubMed ID: 36228749
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.