These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
301 related articles for article (PubMed ID: 31538505)
1. An Approach to Addressing Multiple Imputation Model Uncertainty Using Bayesian Model Averaging. Kaplan D; Yavuz S Multivariate Behav Res; 2020; 55(4):553-567. PubMed ID: 31538505 [TBL] [Abstract][Full Text] [Related]
2. Multiple imputation for handling missing outcome data when estimating the relative risk. Sullivan TR; Lee KJ; Ryan P; Salter AB BMC Med Res Methodol; 2017 Sep; 17(1):134. PubMed ID: 28877666 [TBL] [Abstract][Full Text] [Related]
3. Multiple imputation for longitudinal data using Bayesian lasso imputation model. Yamaguchi Y; Yoshida S; Misumi T; Maruo K Stat Med; 2022 Mar; 41(6):1042-1058. PubMed ID: 35064581 [TBL] [Abstract][Full Text] [Related]
4. Multiple imputation methods for handling missing values in a longitudinal categorical variable with restrictions on transitions over time: a simulation study. De Silva AP; Moreno-Betancur M; De Livera AM; Lee KJ; Simpson JA BMC Med Res Methodol; 2019 Jan; 19(1):14. PubMed ID: 30630434 [TBL] [Abstract][Full Text] [Related]
5. Multiple imputation for non-response when estimating HIV prevalence using survey data. Chinomona A; Mwambi H BMC Public Health; 2015 Oct; 15():1059. PubMed ID: 26475303 [TBL] [Abstract][Full Text] [Related]
6. Dealing with missing covariates in epidemiologic studies: a comparison between multiple imputation and a full Bayesian approach. Erler NS; Rizopoulos D; Rosmalen Jv; Jaddoe VW; Franco OH; Lesaffre EM Stat Med; 2016 Jul; 35(17):2955-74. PubMed ID: 27042954 [TBL] [Abstract][Full Text] [Related]
7. A comparison of multiple imputation methods for handling missing values in longitudinal data in the presence of a time-varying covariate with a non-linear association with time: a simulation study. De Silva AP; Moreno-Betancur M; De Livera AM; Lee KJ; Simpson JA BMC Med Res Methodol; 2017 Jul; 17(1):114. PubMed ID: 28743256 [TBL] [Abstract][Full Text] [Related]
8. Guided Bayesian imputation to adjust for confounding when combining heterogeneous data sources in comparative effectiveness research. Antonelli J; Zigler C; Dominici F Biostatistics; 2017 Jul; 18(3):553-568. PubMed ID: 28334230 [TBL] [Abstract][Full Text] [Related]
9. A comparison of multiple imputation methods for missing data in longitudinal studies. Huque MH; Carlin JB; Simpson JA; Lee KJ BMC Med Res Methodol; 2018 Dec; 18(1):168. PubMed ID: 30541455 [TBL] [Abstract][Full Text] [Related]
10. Part 2. Development of Enhanced Statistical Methods for Assessing Health Effects Associated with an Unknown Number of Major Sources of Multiple Air Pollutants. Park ES; Symanski E; Han D; Spiegelman C Res Rep Health Eff Inst; 2015 Jun; (183 Pt 1-2):51-113. PubMed ID: 26333239 [TBL] [Abstract][Full Text] [Related]
11. Multiple imputation: dealing with missing data. de Goeij MC; van Diepen M; Jager KJ; Tripepi G; Zoccali C; Dekker FW Nephrol Dial Transplant; 2013 Oct; 28(10):2415-20. PubMed ID: 23729490 [TBL] [Abstract][Full Text] [Related]
12. Multiple imputation under Bayesianly smoothed pattern-mixture models for non-ignorable drop-out. Demirtas H Stat Med; 2005 Aug; 24(15):2345-63. PubMed ID: 15977286 [TBL] [Abstract][Full Text] [Related]
13. Standard and reference-based conditional mean imputation. Wolbers M; Noci A; Delmar P; Gower-Page C; Yiu S; Bartlett JW Pharm Stat; 2022 Nov; 21(6):1246-1257. PubMed ID: 35587109 [TBL] [Abstract][Full Text] [Related]
14. Model averaging for treatment effect estimation in subgroups. Bornkamp B; Ohlssen D; Magnusson BP; Schmidli H Pharm Stat; 2017 Mar; 16(2):133-142. PubMed ID: 27935199 [TBL] [Abstract][Full Text] [Related]
15. Accounting for the uncertainty due to chemicals below the detection limit in mixture analysis. Hargarten PM; Wheeler DC Environ Res; 2020 Jul; 186():109466. PubMed ID: 32344207 [TBL] [Abstract][Full Text] [Related]
16. Bayesian predictive model averaging approach to joint longitudinal-survival modeling: Application to an immuno-oncology clinical trial. Yao Z; Morita S; Nishida S; Sugiyama H Stat Med; 2023 Nov; 42(27):4990-5006. PubMed ID: 37705361 [TBL] [Abstract][Full Text] [Related]
17. On the Quantification of Model Uncertainty: A Bayesian Perspective. Kaplan D Psychometrika; 2021 Mar; 86(1):215-238. PubMed ID: 33721184 [TBL] [Abstract][Full Text] [Related]
18. Binary variable multiple-model multiple imputation to address missing data mechanism uncertainty: application to a smoking cessation trial. Siddique J; Harel O; Crespi CM; Hedeker D Stat Med; 2014 Jul; 33(17):3013-28. PubMed ID: 24634315 [TBL] [Abstract][Full Text] [Related]
19. Nonlinear multiple imputation for continuous covariate within semiparametric Cox model: application to HIV data in Senegal. Mbougua JB; Laurent C; Ndoye I; Delaporte E; Gwet H; Molinari N Stat Med; 2013 Nov; 32(26):4651-65. PubMed ID: 23712767 [TBL] [Abstract][Full Text] [Related]
20. A multiple imputation strategy for incomplete longitudinal data. Landrum MB; Becker MP Stat Med; 2001 Sep 15-30; 20(17-18):2741-60. PubMed ID: 11523080 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]