These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 31539250)

  • 21. Phosphorylation at Thr432 induces structural destabilization of the CII ring in the circadian oscillator KaiC.
    Oyama K; Azai C; Matsuyama J; Terauchi K
    FEBS Lett; 2018 Jan; 592(1):36-45. PubMed ID: 29265368
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hybrid All-Atom/Coarse-Grained Simulations of Proteins by Direct Coupling of CHARMM and PRIMO Force Fields.
    Kar P; Feig M
    J Chem Theory Comput; 2017 Nov; 13(11):5753-5765. PubMed ID: 28992696
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Coarse-grained force fields for molecular simulations.
    Barnoud J; Monticelli L
    Methods Mol Biol; 2015; 1215():125-49. PubMed ID: 25330962
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Protein-Protein Interactions in the Cyanobacterial Circadian Clock: Structure of KaiA Dimer in Complex with C-Terminal KaiC Peptides at 2.8 Å Resolution.
    Pattanayek R; Egli M
    Biochemistry; 2015 Aug; 54(30):4575-8. PubMed ID: 26200123
    [TBL] [Abstract][Full Text] [Related]  

  • 25. pyDockCG: new coarse-grained potential for protein-protein docking.
    Solernou A; Fernandez-Recio J
    J Phys Chem B; 2011 May; 115(19):6032-9. PubMed ID: 21506617
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modeling of Disordered Protein Structures Using Monte Carlo Simulations and Knowledge-Based Statistical Force Fields.
    Ciemny MP; Badaczewska-Dawid AE; Pikuzinska M; Kolinski A; Kmiecik S
    Int J Mol Sci; 2019 Jan; 20(3):. PubMed ID: 30708941
    [TBL] [Abstract][Full Text] [Related]  

  • 27. iATTRACT: simultaneous global and local interface optimization for protein-protein docking refinement.
    Schindler CE; de Vries SJ; Zacharias M
    Proteins; 2015 Feb; 83(2):248-58. PubMed ID: 25402278
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Building macromolecular assemblies by information-driven docking: introducing the HADDOCK multibody docking server.
    Karaca E; Melquiond AS; de Vries SJ; Kastritis PL; Bonvin AM
    Mol Cell Proteomics; 2010 Aug; 9(8):1784-94. PubMed ID: 20305088
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A coarse-grained approach to NMR-data-assisted modeling of protein structures.
    Lubecka EA; Liwo A
    J Comput Chem; 2022 Dec; 43(31):2047-2059. PubMed ID: 36134668
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Protein-Protein Docking with Large-Scale Backbone Flexibility Using Coarse-Grained Monte-Carlo Simulations.
    Kurcinski M; Kmiecik S; Zalewski M; Kolinski A
    Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34298961
    [TBL] [Abstract][Full Text] [Related]  

  • 31. "Martinizing" the Variational Implicit Solvent Method (VISM): Solvation Free Energy for Coarse-Grained Proteins.
    Ricci CG; Li B; Cheng LT; Dzubiella J; McCammon JA
    J Phys Chem B; 2017 Jul; 121(27):6538-6548. PubMed ID: 28613904
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Flexible docking and refinement with a coarse-grained protein model using ATTRACT.
    de Vries S; Zacharias M
    Proteins; 2013 Dec; 81(12):2167-74. PubMed ID: 23996217
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A new method for the construction of coarse-grained models of large biomolecules from low-resolution cryo-electron microscopy data.
    Zhang Y; Xia K; Cao Z; Gräter F; Xia F
    Phys Chem Chem Phys; 2019 May; 21(19):9720-9727. PubMed ID: 31025999
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Coarse-Grained Protein Models and Their Applications.
    Kmiecik S; Gront D; Kolinski M; Wieteska L; Dawid AE; Kolinski A
    Chem Rev; 2016 Jul; 116(14):7898-936. PubMed ID: 27333362
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fully Blind Peptide-Protein Docking with pepATTRACT.
    Schindler CEM; de Vries SJ; Zacharias M
    Structure; 2015 Aug; 23(8):1507-1515. PubMed ID: 26146186
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mixing MARTINI: electrostatic coupling in hybrid atomistic-coarse-grained biomolecular simulations.
    Wassenaar TA; Ingólfsson HI; Priess M; Marrink SJ; Schäfer LV
    J Phys Chem B; 2013 Apr; 117(13):3516-30. PubMed ID: 23406326
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural and biophysical methods to analyze clock function and mechanism.
    Egli M
    Methods Enzymol; 2015; 551():223-66. PubMed ID: 25662460
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Highly Coarse-Grained Representations of Transmembrane Proteins.
    Madsen JJ; Sinitskiy AV; Li J; Voth GA
    J Chem Theory Comput; 2017 Feb; 13(2):935-944. PubMed ID: 28043122
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Protein-DNA docking with a coarse-grained force field.
    Setny P; Bahadur RP; Zacharias M
    BMC Bioinformatics; 2012 Sep; 13():228. PubMed ID: 22966980
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modeling Structural Dynamics of Biomolecular Complexes by Coarse-Grained Molecular Simulations.
    Takada S; Kanada R; Tan C; Terakawa T; Li W; Kenzaki H
    Acc Chem Res; 2015 Dec; 48(12):3026-35. PubMed ID: 26575522
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.