These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 31539710)
41. Accuracy of the electron transport in mcnp5 and its suitability for ionization chamber response simulations: A comparison with the egsnrc and penelope codes. Koivunoro H; Siiskonen T; Kotiluoto P; Auterinen I; Hippelainen E; Savolainen S Med Phys; 2012 Mar; 39(3):1335-44. PubMed ID: 22380366 [TBL] [Abstract][Full Text] [Related]
42. Response calculation for standard ionization chambers in the APMP using EGS4 Monte Carlo code. Sato Y; Yunoki A; Hino Y; Yamada T Appl Radiat Isot; 2006; 64(10-11):1211-4. PubMed ID: 16556498 [TBL] [Abstract][Full Text] [Related]
43. Radiation emission dose from patients administered 90Y-labelled radiopharmaceuticals: comparison of experimental measurements versus Monte Carlo simulation. Meo SL; Cicoria G; Montini G; Bergamini C; Campanella F; Pancaldi D; Panebianco AS; Rubello D; Marengo M Nucl Med Commun; 2008 Dec; 29(12):1100-5. PubMed ID: 18987532 [TBL] [Abstract][Full Text] [Related]
44. Monte Carlo simulation of the dynamic micro-multileaf collimator of a LINAC Elekta Precise using PENELOPE. González W; Lallena AM; Alfonso R Phys Med Biol; 2011 Jun; 56(11):3417-31. PubMed ID: 21572185 [TBL] [Abstract][Full Text] [Related]
45. Monte Carlo simulation of air sampling methods for the measurement of radon decay products. Sima O; Luca A; Sahagia M Appl Radiat Isot; 2017 Aug; 126():4-8. PubMed ID: 28242168 [TBL] [Abstract][Full Text] [Related]
46. Comparison of electron dose-point kernels in water generated by the Monte Carlo codes, PENELOPE, GEANT4, MCNPX, and ETRAN. Uusijärvi H; Chouin N; Bernhardt P; Ferrer L; Bardiès M; Forssell-Aronsson E Cancer Biother Radiopharm; 2009 Aug; 24(4):461-7. PubMed ID: 19694581 [TBL] [Abstract][Full Text] [Related]
47. Measurement of the indoor and outdoor (220)Rn (thoron) equilibrium factor: application to lung dose. Harley N; Chittaporn P; Medora R; Merrill R Radiat Prot Dosimetry; 2010 Oct; 141(4):357-62. PubMed ID: 20833672 [TBL] [Abstract][Full Text] [Related]
48. Thimble ionization chambers in medium-energy x-ray beams and the role of constructive details of the central electrode: Monte Carlo simulations and measurements. Ubrich F; Wulff J; Kranzer R; Zink K Phys Med Biol; 2008 Sep; 53(18):4893-906. PubMed ID: 18711244 [TBL] [Abstract][Full Text] [Related]
49. An EGSnrc Monte Carlo study of the microionization chamber for reference dosimetry of narrow irregular IMRT beamlets. Capote R; Sánchez-Doblado F; Leal A; Lagares JI; Arráns R; Hartmann GH Med Phys; 2004 Sep; 31(9):2416-22. PubMed ID: 15487721 [TBL] [Abstract][Full Text] [Related]
50. INFLUENCE OF RADON PROGENY ON DOSE RATE MEASUREMENTS STUDIED AT PTB'S RADON REFERENCE CHAMBER. Kessler P; Camp A; Dombrowski H; Neumaier S; Röttger A; Vargas A Radiat Prot Dosimetry; 2017 Dec; 177(4):407-414. PubMed ID: 29272883 [TBL] [Abstract][Full Text] [Related]
51. Dose response of selected ion chambers in applied homogeneous transverse and longitudinal magnetic fields. Reynolds M; Fallone BG; Rathee S Med Phys; 2013 Apr; 40(4):042102. PubMed ID: 23556912 [TBL] [Abstract][Full Text] [Related]
52. The international measurement system for radionuclide metrology: A strategy for the future. Karam L; Judge S; Louw W Appl Radiat Isot; 2019 Dec; 154():108838. PubMed ID: 31442793 [TBL] [Abstract][Full Text] [Related]
53. A new reference-type ionization chamber with direction-independent response for use in small-field photon-beam dosimetry - An experimental and Monte Carlo study. Delfs B; Kapsch RP; Chofor N; Looe HK; Harder D; Poppe B Z Med Phys; 2019 Feb; 29(1):39-48. PubMed ID: 29880304 [TBL] [Abstract][Full Text] [Related]
54. A study of interface effects in 60Co beams using a thin-walled parallel plate ionization chamber. Nilsson B; Montelius A; Andreo P Med Phys; 1992; 19(6):1413-21. PubMed ID: 1461203 [TBL] [Abstract][Full Text] [Related]
55. An intercomparison for NIRS and NYU passive thoron gas detectors at NYU. Sorimachi A; Ishikawa T; Tokonami S; Chittaporn P; Harley NH Health Phys; 2012 Apr; 102(4):419-24. PubMed ID: 22378203 [TBL] [Abstract][Full Text] [Related]
56. da Silva CJ; da Cruz PAL; Iwahara A; Loureiro JDS; Gomes RDS; Dos Santos ARL; de Araújo MTF; Poledna R; da Silva RL; Laranjeira ADS Appl Radiat Isot; 2018 Apr; 134():316-320. PubMed ID: 29107514 [TBL] [Abstract][Full Text] [Related]
57. The influence of nuclear interactions on ionization chamber perturbation factors in proton beams: FLUKA simulations supported by a Fano test. Lourenço A; Bouchard H; Galer S; Royle G; Palmans H Med Phys; 2019 Feb; 46(2):885-891. PubMed ID: 30414268 [TBL] [Abstract][Full Text] [Related]
58. Towards absolute activity measurements by ionisation chambers using the PENELOPE Monte-Carlo code. de Vismes A; Amiot MN Appl Radiat Isot; 2003 Oct; 59(4):267-72. PubMed ID: 14522235 [TBL] [Abstract][Full Text] [Related]
59. Development of a new ionisation chamber, for HP(10) measurement, using Monte-Carlo simulation and experimental methods. Silva H; Cardoso J; Oliveira C Radiat Prot Dosimetry; 2011 Mar; 144(1-4):168-72. PubMed ID: 21208934 [TBL] [Abstract][Full Text] [Related]
60. INVESTIGATION OF THE HUMIDITY EFFECT ON THE FAC-IR-300 IONIZATION CHAMBER RESPONSE. Mohammadi SM; Tavakoli-Anbaran H Radiat Prot Dosimetry; 2018 Feb; 178(3):292-297. PubMed ID: 28981807 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]