These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

698 related articles for article (PubMed ID: 31539798)

  • 1. Machine learning algorithms can classify outdoor terrain types during running using accelerometry data.
    Dixon PC; Schütte KH; Vanwanseele B; Jacobs JV; Dennerlein JT; Schiffman JM; Fournier PA; Hu B
    Gait Posture; 2019 Oct; 74():176-181. PubMed ID: 31539798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Classifying running speed conditions using a single wearable sensor: Optimal segmentation and feature extraction methods.
    Benson LC; Clermont CA; Osis ST; Kobsar D; Ferber R
    J Biomech; 2018 Apr; 71():94-99. PubMed ID: 29454542
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the Problem of State Recognition in Injection Molding Based on Accelerometer Data Sets.
    Brunthaler J; Grabski P; Sturm V; Lubowski W; Efrosinin D
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015925
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methodology and validation for identifying gait type using machine learning on IMU data.
    Mahoney JM; Rhudy MB
    J Med Eng Technol; 2019 Jan; 43(1):25-32. PubMed ID: 31037995
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine learning algorithms based on signals from a single wearable inertial sensor can detect surface- and age-related differences in walking.
    Hu B; Dixon PC; Jacobs JV; Dennerlein JT; Schiffman JM
    J Biomech; 2018 Apr; 71():37-42. PubMed ID: 29452755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of activity type in preschool children using machine learning techniques.
    Hagenbuchner M; Cliff DP; Trost SG; Van Tuc N; Peoples GE
    J Sci Med Sport; 2015 Jul; 18(4):426-31. PubMed ID: 25088983
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Feature selection for elderly faller classification based on wearable sensors.
    Howcroft J; Kofman J; Lemaire ED
    J Neuroeng Rehabil; 2017 May; 14(1):47. PubMed ID: 28558724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human Activity Recognition Algorithm with Physiological and Inertial Signals Fusion: Photoplethysmography, Electrodermal Activity, and Accelerometry.
    Gilmore J; Nasseri M
    Sensors (Basel); 2024 May; 24(10):. PubMed ID: 38793858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep Learning to Predict Falls in Older Adults Based on Daily-Life Trunk Accelerometry.
    Nait Aicha A; Englebienne G; van Schooten KS; Pijnappels M; Kröse B
    Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29786659
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Classification of runners' performance levels with concurrent prediction of biomechanical parameters using data from inertial measurement units.
    Liu Q; Mo S; Cheung VCK; Cheung BMF; Wang S; Chan PPK; Malhotra A; Cheung RTH; Chan RHM
    J Biomech; 2020 Nov; 112():110072. PubMed ID: 33075666
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Dual-Accelerometer System for Classifying Physical Activity in Children and Adults.
    Stewart T; Narayanan A; Hedayatrad L; Neville J; Mackay L; Duncan S
    Med Sci Sports Exerc; 2018 Dec; 50(12):2595-2602. PubMed ID: 30048411
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison between Accelerometer and Gyroscope in Predicting Level-Ground Running Kinematics by Treadmill Running Kinematics Using a Single Wearable Sensor.
    Chow DHK; Tremblay L; Lam CY; Yeung AWY; Cheng WHW; Tse PTW
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine learning algorithms for activity recognition in ambulant children and adolescents with cerebral palsy.
    Ahmadi M; O'Neil M; Fragala-Pinkham M; Lennon N; Trost S
    J Neuroeng Rehabil; 2018 Nov; 15(1):105. PubMed ID: 30442154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface effects on dynamic stability and loading during outdoor running using wireless trunk accelerometry.
    Schütte KH; Aeles J; De Beéck TO; van der Zwaard BC; Venter R; Vanwanseele B
    Gait Posture; 2016 Jul; 48():220-225. PubMed ID: 27318455
    [TBL] [Abstract][Full Text] [Related]  

  • 15. AccNet24: A deep learning framework for classifying 24-hour activity behaviours from wrist-worn accelerometer data under free-living environments.
    Farrahi V; Muhammad U; Rostami M; Oussalah M
    Int J Med Inform; 2023 Apr; 172():105004. PubMed ID: 36724729
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single Accelerometer to Recognize Human Activities Using Neural Networks.
    Vakacherla SS; Kantharaju P; Mevada M; Kim M
    J Biomech Eng; 2023 Jun; 145(6):. PubMed ID: 36695756
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of Relative Physical Activity Intensity Using Multimodal Sensing of Physiological Data.
    Chowdhury AK; Tjondronegoro D; Chandran V; Zhang J; Trost SG
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31627335
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combining wearable sensor signals, machine learning and biomechanics to estimate tibial bone force and damage during running.
    Matijevich ES; Scott LR; Volgyesi P; Derry KH; Zelik KE
    Hum Mov Sci; 2020 Dec; 74():102690. PubMed ID: 33132194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimating Lower Extremity Running Gait Kinematics with a Single Accelerometer: A Deep Learning Approach.
    Gholami M; Napier C; Menon C
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32455927
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of Low Back Physiotherapy Exercises With Inertial Sensors and Machine Learning: Algorithm Development and Validation.
    Alfakir A; Arrowsmith C; Burns D; Razmjou H; Hardisty M; Whyne C
    JMIR Rehabil Assist Technol; 2022 Aug; 9(3):e38689. PubMed ID: 35998014
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 35.