These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 31539809)
1. Can abiotic stresses in plants be alleviated by manganese nanoparticles or compounds? Ye Y; Medina-Velo IA; Cota-Ruiz K; Moreno-Olivas F; Gardea-Torresdey JL Ecotoxicol Environ Saf; 2019 Nov; 184():109671. PubMed ID: 31539809 [TBL] [Abstract][Full Text] [Related]
2. Silicon (Si): Review and future prospects on the action mechanisms in alleviating biotic and abiotic stresses in plants. Etesami H; Jeong BR Ecotoxicol Environ Saf; 2018 Jan; 147():881-896. PubMed ID: 28968941 [TBL] [Abstract][Full Text] [Related]
3. The effect of manganese nanoparticles on performance, redox reactions and epigenetic changes in turkey tissues. Ognik K; Kozłowski K; Stępniowska A; Szlązak R; Tutaj K; Zduńczyk Z; Jankowski J Animal; 2019 Jun; 13(6):1137-1144. PubMed ID: 30378527 [TBL] [Abstract][Full Text] [Related]
4. 5-aminolevulinic acid-mediated plant adaptive responses to abiotic stress. Rhaman MS; Imran S; Karim MM; Chakrobortty J; Mahamud MA; Sarker P; Tahjib-Ul-Arif M; Robin AHK; Ye W; Murata Y; Hasanuzzaman M Plant Cell Rep; 2021 Aug; 40(8):1451-1469. PubMed ID: 33839877 [TBL] [Abstract][Full Text] [Related]
5. Kresoxim-methyl primes Medicago truncatula plants against abiotic stress factors via altered reactive oxygen and nitrogen species signalling leading to downstream transcriptional and metabolic readjustment. Filippou P; Antoniou C; Obata T; Van Der Kelen K; Harokopos V; Kanetis L; Aidinis V; Van Breusegem F; Fernie AR; Fotopoulos V J Exp Bot; 2016 Mar; 67(5):1259-74. PubMed ID: 26712823 [TBL] [Abstract][Full Text] [Related]
6. Silicon: a duo synergy for regulating crop growth and hormonal signaling under abiotic stress conditions. Kim YH; Khan AL; Lee IJ Crit Rev Biotechnol; 2016 Dec; 36(6):1099-1109. PubMed ID: 26381374 [TBL] [Abstract][Full Text] [Related]
7. Induction of abiotic stress tolerance in plants by endophytic microbes. Lata R; Chowdhury S; Gond SK; White JF Lett Appl Microbiol; 2018 Apr; 66(4):268-276. PubMed ID: 29359344 [TBL] [Abstract][Full Text] [Related]
8. Small particles, big effects: How nanoparticles can enhance plant growth in favorable and harsh conditions. Wang J; Wu H; Wang Y; Ye W; Kong X; Yin Z J Integr Plant Biol; 2024 Jul; 66(7):1274-1294. PubMed ID: 38578151 [TBL] [Abstract][Full Text] [Related]
9. Reactive Oxygen Species and Abiotic Stress in Plants. Gechev T; Petrov V Int J Mol Sci; 2020 Oct; 21(20):. PubMed ID: 33050128 [TBL] [Abstract][Full Text] [Related]
10. Abiotic stress responses in plants. Zhang H; Zhu J; Gong Z; Zhu JK Nat Rev Genet; 2022 Feb; 23(2):104-119. PubMed ID: 34561623 [TBL] [Abstract][Full Text] [Related]
11. Biostimulants for the Regulation of Reactive Oxygen Species Metabolism in Plants under Abiotic Stress. Hasanuzzaman M; Parvin K; Bardhan K; Nahar K; Anee TI; Masud AAC; Fotopoulos V Cells; 2021 Sep; 10(10):. PubMed ID: 34685517 [TBL] [Abstract][Full Text] [Related]
12. Challenges and perspectives to improve crop drought and salinity tolerance. Cominelli E; Conti L; Tonelli C; Galbiati M N Biotechnol; 2013 May; 30(4):355-61. PubMed ID: 23165101 [TBL] [Abstract][Full Text] [Related]
13. The cotton WRKY transcription factor GhWRKY17 functions in drought and salt stress in transgenic Nicotiana benthamiana through ABA signaling and the modulation of reactive oxygen species production. Yan H; Jia H; Chen X; Hao L; An H; Guo X Plant Cell Physiol; 2014 Dec; 55(12):2060-76. PubMed ID: 25261532 [TBL] [Abstract][Full Text] [Related]
14. Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: Action mechanisms and future prospects. Etesami H; Maheshwari DK Ecotoxicol Environ Saf; 2018 Jul; 156():225-246. PubMed ID: 29554608 [TBL] [Abstract][Full Text] [Related]
15. GDP-D-mannose pyrophosphorylase from Pogonatherum paniceum enhances salinity and drought tolerance of transgenic tobacco. Ai T; Liao X; Li R; Fan L; Luo F; Xu Y; Wang S Z Naturforsch C J Biosci; 2016; 71(7-8):243-52. PubMed ID: 27442366 [TBL] [Abstract][Full Text] [Related]
16. Molecular priming as an approach to induce tolerance against abiotic and oxidative stresses in crop plants. Kerchev P; van der Meer T; Sujeeth N; Verlee A; Stevens CV; Van Breusegem F; Gechev T Biotechnol Adv; 2020; 40():107503. PubMed ID: 31901371 [TBL] [Abstract][Full Text] [Related]
17. Time-course analysis of salicylic acid effects on ROS regulation and antioxidant defense in roots of hulled and hulless barley under combined stress of drought, heat and salinity. Torun H Physiol Plant; 2019 Feb; 165(2):169-182. PubMed ID: 29984429 [TBL] [Abstract][Full Text] [Related]
18. Salinity Tolerance in Plants: Trends and Perspectives. Hernández JA Int J Mol Sci; 2019 May; 20(10):. PubMed ID: 31096626 [TBL] [Abstract][Full Text] [Related]
19. Chemical Priming of Plants Against Multiple Abiotic Stresses: Mission Possible? Savvides A; Ali S; Tester M; Fotopoulos V Trends Plant Sci; 2016 Apr; 21(4):329-340. PubMed ID: 26704665 [TBL] [Abstract][Full Text] [Related]
20. Silicon biology in crops under abiotic stress: A paradigm shift and cross-talk between genomics and proteomics. Lesharadevi K; Parthasarathi T; Muneer S J Biotechnol; 2021 Jun; 333():21-38. PubMed ID: 33933485 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]