BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

609 related articles for article (PubMed ID: 31540045)

  • 1. Improving Cancer Immunotherapy by Targeting the Hypoxic Tumor Microenvironment: New Opportunities and Challenges.
    Noman MZ; Hasmim M; Lequeux A; Xiao M; Duhem C; Chouaib S; Berchem G; Janji B
    Cells; 2019 Sep; 8(9):. PubMed ID: 31540045
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeting Autophagy in the Tumor Microenvironment: New Challenges and Opportunities for Regulating Tumor Immunity.
    Janji B; Berchem G; Chouaib S
    Front Immunol; 2018; 9():887. PubMed ID: 29922284
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hypoxic stress: obstacles and opportunities for innovative immunotherapy of cancer.
    Chouaib S; Noman MZ; Kosmatopoulos K; Curran MA
    Oncogene; 2017 Jan; 36(4):439-445. PubMed ID: 27345407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeting hypoxia and hypoxia-inducible factor-1 in the tumor microenvironment for optimal cancer immunotherapy.
    Kheshtchin N; Hadjati J
    J Cell Physiol; 2022 Feb; 237(2):1285-1298. PubMed ID: 34796969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeting hypoxia in the tumor microenvironment: a potential strategy to improve cancer immunotherapy.
    Wang B; Zhao Q; Zhang Y; Liu Z; Zheng Z; Liu S; Meng L; Xin Y; Jiang X
    J Exp Clin Cancer Res; 2021 Jan; 40(1):24. PubMed ID: 33422072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Directing Hypoxic Tumor Microenvironment and HIF to Illuminate Cancer Immunotherapy's Existing Prospects and Challenges in Drug Targets.
    Ray SK; Mukherjee S
    Curr Drug Targets; 2022; 23(5):471-485. PubMed ID: 35021970
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microenvironmental hypoxia orchestrating the cell stroma cross talk, tumor progression and antitumor response.
    Noman MZ; Messai Y; Carré T; Akalay I; Méron M; Janji B; Hasmim M; Chouaib S
    Crit Rev Immunol; 2011; 31(5):357-77. PubMed ID: 22142164
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tumor Hypoxia: A Key Determinant of Microenvironment Hostility and a Major Checkpoint during the Antitumor Response.
    Francis A; Venkatesh GH; Zaarour RF; Zeinelabdin NA; Nawafleh HH; Prasad P; Buart S; Terry S; Chouaib S
    Crit Rev Immunol; 2018; 38(6):505-524. PubMed ID: 31002604
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hypoxia-mediated drug resistance: novel insights on the functional interaction of HIFs and cell death pathways.
    Rohwer N; Cramer T
    Drug Resist Updat; 2011 Jun; 14(3):191-201. PubMed ID: 21466972
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Promise of Targeting Hypoxia to Improve Cancer Immunotherapy: Mirage or Reality?
    Janji B; Chouaib S
    Front Immunol; 2022; 13():880810. PubMed ID: 35795658
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hypoxia-induced autophagy: a new player in cancer immunotherapy?
    Noman MZ; Janji B; Berchem G; Mami-Chouaib F; Chouaib S
    Autophagy; 2012 Apr; 8(4):704-6. PubMed ID: 22441015
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hypoxia-modulatory nanomaterials to relieve tumor hypoxic microenvironment and enhance immunotherapy: Where do we stand?
    Yuan CS; Deng ZW; Qin D; Mu YZ; Chen XG; Liu Y
    Acta Biomater; 2021 Apr; 125():1-28. PubMed ID: 33639310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrating tumor hypoxic stress in novel and more adaptable strategies for cancer immunotherapy.
    Abou Khouzam R; Goutham HV; Zaarour RF; Chamseddine AN; Francis A; Buart S; Terry S; Chouaib S
    Semin Cancer Biol; 2020 Oct; 65():140-154. PubMed ID: 31927131
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The HIF-1α hypoxia response in tumor-infiltrating T lymphocytes induces functional CD137 (4-1BB) for immunotherapy.
    Palazón A; Martínez-Forero I; Teijeira A; Morales-Kastresana A; Alfaro C; Sanmamed MF; Perez-Gracia JL; Peñuelas I; Hervás-Stubbs S; Rouzaut A; de Landázuri MO; Jure-Kunkel M; Aragonés J; Melero I
    Cancer Discov; 2012 Jul; 2(7):608-23. PubMed ID: 22719018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeting hypoxia, HIF-1, and tumor glucose metabolism to improve radiotherapy efficacy.
    Meijer TW; Kaanders JH; Span PN; Bussink J
    Clin Cancer Res; 2012 Oct; 18(20):5585-94. PubMed ID: 23071360
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeting Metabolism to Improve the Tumor Microenvironment for Cancer Immunotherapy.
    Bader JE; Voss K; Rathmell JC
    Mol Cell; 2020 Jun; 78(6):1019-1033. PubMed ID: 32559423
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hypoxia and cancer cell metabolism.
    Huang D; Li C; Zhang H
    Acta Biochim Biophys Sin (Shanghai); 2014 Mar; 46(3):214-9. PubMed ID: 24389642
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hypoxia as a potential inducer of immune tolerance, tumor plasticity and a driver of tumor mutational burden: Impact on cancer immunotherapy.
    Abou Khouzam R; Janji B; Thiery J; Zaarour RF; Chamseddine AN; Mayr H; Savagner P; Kieda C; Gad S; Buart S; Lehn JM; Limani P; Chouaib S
    Semin Cancer Biol; 2023 Dec; 97():104-123. PubMed ID: 38029865
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent Advances In Developing Novel Anti-Cancer Drugs Targeting Tumor Hypoxic and Acidic Microenvironments.
    Li W; Sun X
    Recent Pat Anticancer Drug Discov; 2018; 13(4):455-468. PubMed ID: 30173649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanotherapeutic approaches targeting angiogenesis and immune dysfunction in tumor microenvironment.
    Hameed S; Bhattarai P; Dai Z
    Sci China Life Sci; 2018 Apr; 61(4):380-391. PubMed ID: 29607461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.