These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

551 related articles for article (PubMed ID: 31540083)

  • 1. Impact of Graphene-Based Surfaces on the Basic Biological Properties of Human Umbilical Cord Mesenchymal Stem Cells: Implications for Ex Vivo Cell Expansion Aimed at Tissue Repair.
    Jagiełło J; Sekuła-Stryjewska M; Noga S; Adamczyk E; Dźwigońska M; Kurcz M; Kurp K; Winkowska-Struzik M; Karnas E; Boruczkowski D; Madeja Z; Lipińska L; Zuba-Surma EK
    Int J Mol Sci; 2019 Sep; 20(18):. PubMed ID: 31540083
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Graphene-based materials enhance cardiomyogenic and angiogenic differentiation capacity of human mesenchymal stem cells in vitro - Focus on cardiac tissue regeneration.
    Sekuła-Stryjewska M; Noga S; Dźwigońska M; Adamczyk E; Karnas E; Jagiełło J; Szkaradek A; Chytrosz P; Boruczkowski D; Madeja Z; Kotarba A; Lipińska L; Zuba-Surma EK
    Mater Sci Eng C Mater Biol Appl; 2021 Feb; 119():111614. PubMed ID: 33321657
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Promising new potential for mesenchymal stem cells derived from human umbilical cord Wharton's jelly: sweat gland cell-like differentiative capacity.
    Xu Y; Huang S; Ma K; Fu X; Han W; Sheng Z
    J Tissue Eng Regen Med; 2012 Aug; 6(8):645-54. PubMed ID: 21916019
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gradient Chitosan Hydrogels Modified with Graphene Derivatives and Hydroxyapatite: Physiochemical Properties and Initial Cytocompatibility Evaluation.
    Kosowska K; Domalik-Pyzik P; Sekuła-Stryjewska M; Noga S; Jagiełło J; Baran M; Lipińska L; Zuba-Surma E; Chłopek J
    Int J Mol Sci; 2020 Jul; 21(14):. PubMed ID: 32664452
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wharton's Jelly Mesenchymal Stromal Cells from Human Umbilical Cord: a Close-up on Immunomodulatory Molecules Featured In Situ and In Vitro.
    Corsello T; Amico G; Corrao S; Anzalone R; Timoneri F; Lo Iacono M; Russo E; Spatola GF; Uzzo ML; Giuffrè M; Caprnda M; Kubatka P; Kruzliak P; Conaldi PG; La Rocca G
    Stem Cell Rev Rep; 2019 Dec; 15(6):900-918. PubMed ID: 31741193
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polylactide- and polycaprolactone-based substrates enhance angiogenic potential of human umbilical cord-derived mesenchymal stem cells in vitro - implications for cardiovascular repair.
    Sekuła M; Domalik-Pyzik P; Morawska-Chochół A; Bobis-Wozowicz S; Karnas E; Noga S; Boruczkowski D; Adamiak M; Madeja Z; Chłopek J; Zuba-Surma EK
    Mater Sci Eng C Mater Biol Appl; 2017 Aug; 77():521-533. PubMed ID: 28532062
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation and characterization of Wharton's jelly-derived multipotent mesenchymal stromal cells obtained from bovine umbilical cord and maintained in a defined serum-free three-dimensional system.
    Cardoso TC; Ferrari HF; Garcia AF; Novais JB; Silva-Frade C; Ferrarezi MC; Andrade AL; Gameiro R
    BMC Biotechnol; 2012 May; 12():18. PubMed ID: 22559872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential expression of cell cycle and WNT pathway-related genes accounts for differences in the growth and differentiation potential of Wharton's jelly and bone marrow-derived mesenchymal stem cells.
    Batsali AK; Pontikoglou C; Koutroulakis D; Pavlaki KI; Damianaki A; Mavroudi I; Alpantaki K; Kouvidi E; Kontakis G; Papadaki HA
    Stem Cell Res Ther; 2017 Apr; 8(1):102. PubMed ID: 28446235
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characteristics of mesenchymal stem cells derived from Wharton's jelly of human umbilical cord and for fabrication of non-scaffold tissue-engineered cartilage.
    Liu S; Hou KD; Yuan M; Peng J; Zhang L; Sui X; Zhao B; Xu W; Wang A; Lu S; Guo Q
    J Biosci Bioeng; 2014 Feb; 117(2):229-235. PubMed ID: 23899897
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Therapeutic effect of three-dimensional hanging drop cultured human umbilical cord mesenchymal stem cells on osteoarthritis in rabbits.
    Fu Q; Han M; Dai X; Lu R; Deng E; Shen X; Ou F; Pu Y; Xie X; Liu K; Gan Y; Li D
    Stem Cell Res Ther; 2024 Sep; 15(1):311. PubMed ID: 39294780
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Repair of Osteochondral Defects Using Human Umbilical Cord Wharton's Jelly-Derived Mesenchymal Stem Cells in a Rabbit Model.
    Liu S; Jia Y; Yuan M; Guo W; Huang J; Zhao B; Peng J; Xu W; Lu S; Guo Q
    Biomed Res Int; 2017; 2017():8760383. PubMed ID: 28261617
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving stemness and functional features of mesenchymal stem cells from Wharton's jelly of a human umbilical cord by mimicking the native, low oxygen stem cell niche.
    Obradovic H; Krstic J; Trivanovic D; Mojsilovic S; Okic I; Kukolj T; Ilic V; Jaukovic A; Terzic M; Bugarski D
    Placenta; 2019 Jul; 82():25-34. PubMed ID: 31174623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differentiation of human umbilical cord-derived mesenchymal stem cells into hepatocytes in vitro.
    Zheng G; Liu Y; Jing Q; Zhang L
    Biomed Mater Eng; 2015; 25(1 Suppl):145-57. PubMed ID: 25538065
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conversion of human umbilical cord mesenchymal stem cells in Wharton's jelly to dopamine neurons mediated by the Lmx1a and neurturin in vitro: potential therapeutic application for Parkinson's disease in a rhesus monkey model.
    Yan M; Sun M; Zhou Y; Wang W; He Z; Tang D; Lu S; Wang X; Li S; Wang W; Li H
    PLoS One; 2013; 8(5):e64000. PubMed ID: 23724014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Feasibility study on intact human umbilical cord Wharton's jelly as a scaffold for human autologous chondrocyte: In-vitro study.
    Muthuchamy M; Subramanian K; Padhiar C; Dhanraj AK; Desireddy S
    Int J Artif Organs; 2022 Nov; 45(11):936-944. PubMed ID: 35982588
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regenerative potential of Wharton's jelly-derived mesenchymal stem cells: A new horizon of stem cell therapy.
    Abbaszadeh H; Ghorbani F; Derakhshani M; Movassaghpour AA; Yousefi M; Talebi M; Shamsasenjan K
    J Cell Physiol; 2020 Dec; 235(12):9230-9240. PubMed ID: 32557631
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Renoprotective effect of human umbilical cord-derived mesenchymal stem cells in immunodeficient mice suffering from acute kidney injury.
    Fang TC; Pang CY; Chiu SC; Ding DC; Tsai RK
    PLoS One; 2012; 7(9):e46504. PubMed ID: 23029541
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative analysis of human Wharton's jelly mesenchymal stem cells derived from different parts of the same umbilical cord.
    Bharti D; Shivakumar SB; Park JK; Ullah I; Subbarao RB; Park JS; Lee SL; Park BW; Rho GJ
    Cell Tissue Res; 2018 Apr; 372(1):51-65. PubMed ID: 29204746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy Metabolism Analysis of Three Different Mesenchymal Stem Cell Populations of Umbilical Cord Under Normal and Pathologic Conditions.
    Russo E; Lee JY; Nguyen H; Corrao S; Anzalone R; La Rocca G; Borlongan CV
    Stem Cell Rev Rep; 2020 Jun; 16(3):585-595. PubMed ID: 32185666
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation and Molecular Characterization of Progenitor Cells from Human Umbilical Cord.
    Goyal U; Sen A; Ta M
    Methods Mol Biol; 2019; 2029():1-13. PubMed ID: 31273729
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.