These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 31540150)

  • 21. Efficient Sodium-Ion Intercalation into the Freestanding Prussian Blue/Graphene Aerogel Anode in a Hybrid Capacitive Deionization System.
    Vafakhah S; Guo L; Sriramulu D; Huang S; Saeedikhani M; Yang HY
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):5989-5998. PubMed ID: 30667226
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Disinfection of Bacteria in Water by Capacitive Deionization.
    Laxman K; Sathe P; Al Abri M; Dobretsov S; Dutta J
    Front Chem; 2020; 8():774. PubMed ID: 33110910
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Energy consumption in capacitive deionization - Constant current versus constant voltage operation.
    Dykstra JE; Porada S; van der Wal A; Biesheuvel PM
    Water Res; 2018 Oct; 143():367-375. PubMed ID: 29986246
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterizing the Impacts of Deposition Techniques on the Performance of MnO
    Hand S; Cusick RD
    Environ Sci Technol; 2017 Oct; 51(20):12027-12034. PubMed ID: 28902989
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhanced charge efficiency and reduced energy use in capacitive deionization by increasing the discharge voltage.
    Kim T; Dykstra JE; Porada S; van der Wal A; Yoon J; Biesheuvel PM
    J Colloid Interface Sci; 2015 May; 446():317-26. PubMed ID: 25278271
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrosorptive desalination by carbon nanotubes and nanofibres electrodes and ion-exchange membranes.
    Li H; Gao Y; Pan L; Zhang Y; Chen Y; Sun Z
    Water Res; 2008 Dec; 42(20):4923-8. PubMed ID: 18929385
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fabrication of porous graphene electrodes via CO
    Zhang Y; Chen L; Mao S; Sun Z; Song Y; Zhao R
    J Colloid Interface Sci; 2019 Feb; 536():252-260. PubMed ID: 30368097
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A comparison of multicomponent electrosorption in capacitive deionization and membrane capacitive deionization.
    Hassanvand A; Chen GQ; Webley PA; Kentish SE
    Water Res; 2018 Mar; 131():100-109. PubMed ID: 29277078
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Novel graphene-like electrodes for capacitive deionization.
    Li H; Zou L; Pan L; Sun Z
    Environ Sci Technol; 2010 Nov; 44(22):8692-7. PubMed ID: 20964326
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhanced electrochemical and capacitive deionization performance of metal organic framework/holey graphene composite electrodes.
    Feng J; Liu L; Meng Q
    J Colloid Interface Sci; 2021 Jan; 582(Pt B):447-458. PubMed ID: 32896674
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fabrication of polyvinylidene fluoride-derived porous carbon heterostructure with inserted carbon nanotube via phase-inversion coupled with annealing for capacitive deionization application.
    Li Y; Qi J; Zhang W; Zhang M; Li J
    J Colloid Interface Sci; 2019 Oct; 554():353-361. PubMed ID: 31310877
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fabrication of an antimony doped tin oxide-graphene nanocomposite for highly effective capacitive deionization of saline water.
    Ren L; Xu B; Wang G; Yin X; Liu Y; Yang W; Chen Y
    RSC Adv; 2020 Oct; 10(64):39130-39136. PubMed ID: 35518392
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Theoretical framework for designing a desalination plant based on membrane capacitive deionization.
    Wang L; Lin S
    Water Res; 2019 Jul; 158():359-369. PubMed ID: 31055016
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhanced Hybrid Capacitive Deionization Performance by Sodium Titanium Phosphate/Reduced Porous Graphene Oxide Composites.
    Han C; Meng Q; Cao B; Tian G
    ACS Omega; 2019 Jul; 4(7):11455-11463. PubMed ID: 31460250
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Capacitive deionization coupled with microbial fuel cells to desalinate low-concentration salt water.
    Yuan L; Yang X; Liang P; Wang L; Huang ZH; Wei J; Huang X
    Bioresour Technol; 2012 Apr; 110():735-8. PubMed ID: 22364771
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Scalable Approach to Highly Efficient and Rapid Capacitive Deionization with CNT-Thread As Electrodes.
    Moronshing M; Subramaniam C
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):39907-39915. PubMed ID: 29112804
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Novel nitrogen doped graphene sponge with ultrahigh capacitive deionization performance.
    Xu X; Sun Z; Chua DH; Pan L
    Sci Rep; 2015 Jun; 5():11225. PubMed ID: 26063676
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Three-dimensional graphene/metal oxide nanoparticle hybrids for high-performance capacitive deionization of saline water.
    Yin H; Zhao S; Wan J; Tang H; Chang L; He L; Zhao H; Gao Y; Tang Z
    Adv Mater; 2013 Nov; 25(43):6270-6. PubMed ID: 23963808
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Energy breakdown in capacitive deionization.
    Hemmatifar A; Palko JW; Stadermann M; Santiago JG
    Water Res; 2016 Nov; 104():303-311. PubMed ID: 27565115
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Frequency analysis and resonant operation for efficient capacitive deionization.
    Ramachandran A; Hawks SA; Stadermann M; Santiago JG
    Water Res; 2018 Nov; 144():581-591. PubMed ID: 30092504
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.