BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 31540171)

  • 21. Enhanced electrochemical performance of lithium ion batteries using Sb
    Dong Y; Yang S; Zhang Z; Lee JM; Zapien JA
    Nanoscale; 2018 Feb; 10(7):3159-3165. PubMed ID: 29411002
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rational construction of K
    Li X; Zhuang C; Xu J; Li L; Xu T; Dai S; Wang X; Li X; Wang Y
    Nanoscale; 2021 May; 13(17):8199-8209. PubMed ID: 33885119
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Magnéli Phase Titanium Oxide as a Novel Anode Material for Potassium-Ion Batteries.
    Lee GW; Park BH; Nazarian-Samani M; Kim YH; Roh KC; Kim KB
    ACS Omega; 2019 Mar; 4(3):5304-5309. PubMed ID: 31459701
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Engineering monodispersed 2 nm Sb
    Zhao S; Jia H; Wang Y; Ju N; Zhang X; Guo Y; Wang Y; Wang H; Niu S; Lu Y; Zhu L; Sun HB
    Dalton Trans; 2022 Aug; 51(33):12524-12531. PubMed ID: 35894207
    [TBL] [Abstract][Full Text] [Related]  

  • 25. One-pot synthesis of tin chalcogenide-reduced graphene oxide-carbon nanotube nanocomposite as anode material for lithium-ion batteries.
    Abbasnezhad A; Asgharzadeh H; Ansari Hamedani A; Hayat Soytas S
    Dalton Trans; 2020 May; 49(18):5890-5897. PubMed ID: 32309834
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Potential application of 2D monolayer β-GeSe as an anode material in Na/K ion batteries.
    Zhou Y; Zhao M; Chen ZW; Shi XM; Jiang Q
    Phys Chem Chem Phys; 2018 Dec; 20(48):30290-30296. PubMed ID: 30484448
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Binder-Free Anodes for Potassium-ion Batteries Comprising Antimony Nanoparticles on Carbon Nanotubes Obtained Using Electrophoretic Deposition.
    Pham XM; Abdul Ahad S; Patil NN; Zubair M; Mushtaq M; Gao H; Owusu KA; Kennedy T; Geaney H; Singh S; Ryan KM
    ACS Appl Mater Interfaces; 2024 Jul; ():. PubMed ID: 38946438
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nanostructured hybrid silicon/carbon nanotube heterostructures: reversible high-capacity lithium-ion anodes.
    Wang W; Kumta PN
    ACS Nano; 2010 Apr; 4(4):2233-41. PubMed ID: 20364846
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Activating the Extra Redox Couple of Co
    Tian Z; Chen Y; Sun S; Jiang X; Liu H; Wang C; Huang Q; Liu C; Wang Y; Guo L
    ACS Appl Mater Interfaces; 2022 Jan; 14(1):611-621. PubMed ID: 34928585
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tailoring of Aqueous-Based Carbon Nanotube⁻Nanocellulose Films as Self-Standing Flexible Anodes for Lithium-Ion Storage.
    Nguyen HK; Bae J; Hur J; Park SJ; Park MS; Kim IT
    Nanomaterials (Basel); 2019 Apr; 9(4):. PubMed ID: 31022938
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bi-Sb Nanocrystals Embedded in Phosphorus as High-Performance Potassium Ion Battery Electrodes.
    Chen KT; Tuan HY
    ACS Nano; 2020 Sep; 14(9):11648-11661. PubMed ID: 32886479
    [TBL] [Abstract][Full Text] [Related]  

  • 32. 3D structure through planting core-shell Si@TiN into an amorphous carbon slag: improved capacity of lithium-ion anodes.
    Tu J; Zhao Z; Hu L; Jiao S; Hou J; Zhu H
    Phys Chem Chem Phys; 2013 Jul; 15(25):10472-6. PubMed ID: 23685911
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Amorphous silicon-carbon nanospheres synthesized by chemical vapor deposition using cheap methyltrichlorosilane as improved anode materials for Li-ion batteries.
    Zhang Z; Zhang M; Wang Y; Tan Q; Lv X; Zhong Z; Li H; Su F
    Nanoscale; 2013 Jun; 5(12):5384-9. PubMed ID: 23652614
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Size Effect of Ordered Mesoporous Carbon Nanospheres for Anodes in Li-Ion Battery.
    Chang PY; Bindumadhavan K; Doong RA
    Nanomaterials (Basel); 2015 Dec; 5(4):2348-2358. PubMed ID: 28347125
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhancing the electrochemical properties of TiNb
    Cheng LQ; Xie X; Chen K; He Y; Xu H; Liu R; Feng M
    RSC Adv; 2024 May; 14(22):15722-15729. PubMed ID: 38746846
    [TBL] [Abstract][Full Text] [Related]  

  • 36. One-Step Construction of V
    Lu J; Tong H; Chen S; Wang C; Zeng X; Tu J; Chen Q
    ACS Appl Mater Interfaces; 2021 Nov; 13(45):54308-54314. PubMed ID: 34727693
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Theoretical prediction of T-graphene as a promising alkali-ion battery anode offering ultrahigh capacity.
    Hu J; Liu Y; Liu N; Li J; Ouyang C
    Phys Chem Chem Phys; 2020 Feb; 22(6):3281-3289. PubMed ID: 31970357
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High-Loading Carbon Nanotubes on Polymer Nanofibers as Stand-Alone Anode Materials for Li-Ion Batteries.
    Lim AC; Jadhav HS; Kwon HJ; Seo JG
    ACS Omega; 2019 Feb; 4(2):4129-4137. PubMed ID: 31459621
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Growth of linked silicon/carbon nanospheres on copper substrate as integrated electrodes for Li-ion batteries.
    Zhang Z; Wang Y; Tan Q; Li D; Chen Y; Zhong Z; Su F
    Nanoscale; 2014 Jan; 6(1):371-7. PubMed ID: 24201898
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Facile synthesis of Sb
    Zhang Z; Zhao J; Xu M; Wang H; Gong Y; Xu J
    Nanotechnology; 2018 Aug; 29(33):335401. PubMed ID: 29775439
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.