These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 31540298)

  • 21. An experimental comparison of the relative benefits of work and torque assistance in ankle exoskeletons.
    Jackson RW; Collins SH
    J Appl Physiol (1985); 2015 Sep; 119(5):541-57. PubMed ID: 26159764
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Study on the Control Method of Knee Joint Human-Exoskeleton Interactive System.
    Wang Z; Yang C; Ding Z; Yang T; Guo H; Jiang F; Tian B
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161792
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Kinematic effects of inertia and friction added by a robotic knee exoskeleton after prolonged walking.
    Shirota C; Tucker MR; Lambercy O; Gassert R
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():430-434. PubMed ID: 28813857
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Randomized controlled trial of robot-assisted gait training with dorsiflexion assistance on chronic stroke patients wearing ankle-foot-orthosis.
    Yeung LF; Ockenfeld C; Pang MK; Wai HW; Soo OY; Li SW; Tong KY
    J Neuroeng Rehabil; 2018 Jun; 15(1):51. PubMed ID: 29914523
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A one-degree-of-freedom assistive exoskeleton with inertia compensation: the effects on the agility of leg swing motion.
    Aguirre-Ollinger G; Colgate JE; Peshkin MA; Goswami A
    Proc Inst Mech Eng H; 2011 Mar; 225(3):228-45. PubMed ID: 21485325
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Heuristic-Based Ankle Exoskeleton Control for Co-Adaptive Assistance of Human Locomotion.
    Jackson RW; Collins SH
    IEEE Trans Neural Syst Rehabil Eng; 2019 Oct; 27(10):2059-2069. PubMed ID: 31425120
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Simulation on the Effect of Gait Variability, Delays, and Inertia with Respect to Wearer Energy Savings with Exoskeleton Assistance.
    Fang S; Kinney AL; Reissman ME; Reissman T
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():506-511. PubMed ID: 31374680
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Compact Hip-Force Sensor for a Gait-Assistance Exoskeleton System.
    Choi H; Seo K; Hyung S; Shim Y; Lim SC
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29438300
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Muscle recruitment and coordination with an ankle exoskeleton.
    Steele KM; Jackson RW; Shuman BR; Collins SH
    J Biomech; 2017 Jul; 59():50-58. PubMed ID: 28623037
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Design of a biologically inspired lower limb exoskeleton for human gait rehabilitation.
    Lyu M; Chen W; Ding X; Wang J; Bai S; Ren H
    Rev Sci Instrum; 2016 Oct; 87(10):104301. PubMed ID: 27802730
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Design of a Low Profile, Unpowered Ankle Exoskeleton That Fits Under Clothes: Overcoming Practical Barriers to Widespread Societal Adoption.
    Yandell MB; Tacca JR; Zelik KE
    IEEE Trans Neural Syst Rehabil Eng; 2019 Apr; 27(4):712-723. PubMed ID: 30872237
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biomechanical effects of robot assisted walking on knee joint kinematics and muscle activation pattern.
    Thangavel P; Vidhya S; Li J; Chew E; Bezerianos A; Yu H
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():252-257. PubMed ID: 28813827
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of VariLeg, an exoskeleton with variable stiffness actuation: first results and user evaluation from the CYBATHLON 2016.
    Schrade SO; Dätwyler K; Stücheli M; Studer K; Türk DA; Meboldt M; Gassert R; Lambercy O
    J Neuroeng Rehabil; 2018 Mar; 15(1):18. PubMed ID: 29534730
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reducing the metabolic cost of walking with an ankle exoskeleton: interaction between actuation timing and power.
    Galle S; Malcolm P; Collins SH; De Clercq D
    J Neuroeng Rehabil; 2017 Apr; 14(1):35. PubMed ID: 28449684
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Simulation of Exoskeleton Alignment and its Effect on the Knee Extensor and Flexor Muscles.
    MajidiRad A; Yihun Y; Desai J; Hakansson NA
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():4093-4096. PubMed ID: 31946771
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Control System of a Lower-Extremity Exoskeleton Based on the Artificial Neural Network.
    Martinez Lema DS; Karavaev A; Hybl J; Hejda J; Volf P; Kutilek P
    Stud Health Technol Inform; 2020 Sep; 273():91-96. PubMed ID: 33087596
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Autonomous exoskeleton reduces metabolic cost of walking.
    Mooney LM; Rouse EJ; Herr HM
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3065-8. PubMed ID: 25570638
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Restoration of gait for spinal cord injury patients using HAL with intention estimator for preferable swing speed.
    Tsukahara A; Hasegawa Y; Eguchi K; Sankai Y
    IEEE Trans Neural Syst Rehabil Eng; 2015 Mar; 23(2):308-18. PubMed ID: 25350933
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Retraining of Human Gait - Are Lightweight Cable-Driven Leg Exoskeleton Designs Effective?
    Jin X; Prado A; Agrawal SK
    IEEE Trans Neural Syst Rehabil Eng; 2018 Apr; 26(4):847-855. PubMed ID: 29641389
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Design of a Payload Adjustment Device for an Unpowered Lower-Limb Exoskeleton.
    Yun J; Kang O; Joe HM
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34208291
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.