These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 31540459)

  • 1. Development of Polyoxymethylene/Polylactide Blends for a Potentially Biodegradable Material: Crystallization Kinetics, Lifespan Prediction, and Enzymatic Degradation Behavior.
    Li J; Wang Y; Wang X; Wu D
    Polymers (Basel); 2019 Sep; 11(9):. PubMed ID: 31540459
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving the Toughness and Thermal Resistance of Polyoxymethylene/Poly(lactic acid) Blends: Evaluation of Structure-Properties Correlation for Reactive Processing.
    Andrzejewski J; Skórczewska K; Kloziński A
    Polymers (Basel); 2020 Feb; 12(2):. PubMed ID: 32028602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystalline Characteristics, Mechanical Properties, Thermal Degradation Kinetics and Hydration Behavior of Biodegradable Fibers Melt-Spun from Polyoxymethylene/Poly(l-lactic acid) Blends.
    Li J; Wang Y; Wang X; Wu D
    Polymers (Basel); 2019 Oct; 11(11):. PubMed ID: 31731470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Melt-spun polylactide/ethylene vinyl alcohol copolymer fiber.
    Liu Q; Yu D; Duan Z; Qin S; Wang A; Li L; Guo H; Deng B; Li H; Li D
    Int J Biol Macromol; 2024 Jul; 273(Pt 2):133136. PubMed ID: 38889826
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced crystallization rate of poly(L-lactic acid) (PLLA) by polyoxymethylene (POM) fragment crystals in the PLLA/POM blends with a small amount of POM.
    Qiu J; Guan J; Wang H; Zhu S; Cao X; Ye QL; Li Y
    J Phys Chem B; 2014 Jun; 118(25):7167-76. PubMed ID: 24886108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fully biodegradable and biorenewable ternary blends from polylactide, poly(3-hydroxybutyrate-co-hydroxyvalerate) and poly(butylene succinate) with balanced properties.
    Zhang K; Mohanty AK; Misra M
    ACS Appl Mater Interfaces; 2012 Jun; 4(6):3091-101. PubMed ID: 22616661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Melt Crystallization Behavior and Crystalline Morphology of Polylactide/Poly(ε-caprolactone) Blends Compatibilized by Lactide-Caprolactone Copolymer.
    Zhang C; Lan Q; Zhai T; Nie S; Luo J; Yan W
    Polymers (Basel); 2018 Oct; 10(11):. PubMed ID: 30961106
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study of biodegradable polylactide/poly(butylene adipate-co-terephthalate) blends.
    Jiang L; Wolcott MP; Zhang J
    Biomacromolecules; 2006 Jan; 7(1):199-207. PubMed ID: 16398516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Morphology and properties of soy protein and polylactide blends.
    Zhang J; Jiang L; Zhu L; Jane JL; Mungara P
    Biomacromolecules; 2006 May; 7(5):1551-61. PubMed ID: 16677038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical Properties, Crystallization Behaviors and Phase Morphologies of PLA/GTR Blends by Reactive Compatibilization.
    Shen H; Hu Y; Lin Z; Meng F; Ju G
    Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295162
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental Determination of Molecular Weight-Dependent Miscibility of PBAT/PLA Blends.
    Su S; Kopitzky R; Berrenrath C
    Polymers (Basel); 2021 Oct; 13(21):. PubMed ID: 34771243
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of Modified Thermoplastic Starch on Crystallization Kinetics and Barrier Properties of PLA.
    Kulkarni A; Narayan R
    Polymers (Basel); 2021 Nov; 13(23):. PubMed ID: 34883628
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ternary blends from biological poly(3-hydroxybutyrate-co-4-hydroxyvalerate), poly(L-lactic acid), and poly(vinyl acetate) with balanced properties.
    Li Y; Yao S; Han C; Yu Y; Xiao L
    Int J Biol Macromol; 2021 Jun; 181():60-71. PubMed ID: 33771544
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ductility and Toughness Improvement of Injection-Molded Compostable Pieces of Polylactide by Melt Blending with Poly(ε-caprolactone) and Thermoplastic Starch.
    Quiles-Carrillo L; Montanes N; Pineiro F; Jorda-Vilaplana A; Torres-Giner S
    Materials (Basel); 2018 Oct; 11(11):. PubMed ID: 30380751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-isothermal crystallization kinetics and rheological behaviors of PBT/PET blends: effects of PET property and nano-silica content.
    Chen S; Fu X; Jing Z; Chen H
    Des Monomers Polym; 2022; 25(1):32-46. PubMed ID: 35185358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of LNR-g-MMA on the Mechanical Properties and Lifetime Estimation of PLA/PP Blends.
    Wisetkhamsai K; Patthaveekongka W; Arayapranee W
    Polymers (Basel); 2023 Mar; 15(7):. PubMed ID: 37050326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An environmentally sustainable plasticizer toughened polylactide.
    Kang H; Li Y; Gong M; Guo Y; Guo Z; Fang Q; Li X
    RSC Adv; 2018 Mar; 8(21):11643-11651. PubMed ID: 35542805
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved miscibility and toughness of biological poly(3-hydroxybutyrate-co-4-hydroxybutyrate)/poly(lactic acid) blends via melt-blending-induced thermal degradation.
    Ong YT; Chen TM; Don TM
    Int J Biol Macromol; 2023 Dec; 253(Pt 3):127001. PubMed ID: 37729999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of poly(methyl methacrylate)/poly(lactic acid) blend as sustainable biomaterial for dental applications.
    Charasseangpaisarn T; Wiwatwarrapan C; Thunyakitpisal P; Srimaneepong V
    Sci Rep; 2023 Oct; 13(1):16904. PubMed ID: 37803035
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel blends of polylactide with ethylene glycol derivatives of POSS.
    Zubrowska A; Piorkowska E; Kowalewska A; Cichorek M
    Colloid Polym Sci; 2015; 293(1):23-33. PubMed ID: 25598571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.