These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 31540499)

  • 1. Deformation and Fatigue Behaviour of A356-T7 Cast Aluminium Alloys Used in High Specific Power IC Engines.
    Natesan E; Eriksson S; Ahlström J; Persson C
    Materials (Basel); 2019 Sep; 12(18):. PubMed ID: 31540499
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Temperature on Deformation and Fatigue Behaviour of A356-T7 Cast Aluminium Alloys Used in High Specific Power IC Engine Cylinder Heads.
    Natesan E; Eriksson S; Ahlström J; Persson C
    Materials (Basel); 2020 Mar; 13(5):. PubMed ID: 32155985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of Dwell Time on the Deformation and Fatigue Behaviour of A356-T7 Cast Aluminium Alloys Used in High Specific Power IC Engine Cylinder Heads.
    Natesan E; Meyer KA; Eriksson S; Ahlström J; Persson C
    Materials (Basel); 2020 Jun; 13(12):. PubMed ID: 32549359
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Temperature on the Evolution of Yield Surface and Stress Asymmetry in A356-T7 Cast Aluminium Alloy.
    Natesan E; Ahlström J; Eriksson S; Persson C
    Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fatigue properties of magnesium alloy AZ91 processed by severe plastic deformation.
    Fintová S; Kunz L
    J Mech Behav Biomed Mater; 2015 Feb; 42():219-28. PubMed ID: 25498295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Surface Finishing State on Fatigue Strength of Cast Aluminium and Steel Alloys.
    Oberreiter M; Horvath M; Stoschka M; Fladischer S
    Materials (Basel); 2023 Jun; 16(13):. PubMed ID: 37445075
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microstructure and Low-Cycle Fatigue Behavior of Al-9Si-4Cu-0.4Mg-0.3Sc Alloy with Different Casting States.
    Wang G; Che X; Zhang Z; Zhang H; Zhang S; Li Z; Sun J
    Materials (Basel); 2020 Jan; 13(3):. PubMed ID: 32023948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Fatigue properties of dental alloys. 12% Au-Pd-Ag alloy and type III gold alloy].
    Kato H
    Aichi Gakuin Daigaku Shigakkai Shi; 1989 Dec; 27(4):1017-27. PubMed ID: 2489466
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pre-overloading to extend fatigue life of cast clasps.
    Mahmoud A
    J Dent Res; 2007 Sep; 86(9):868-72. PubMed ID: 17720857
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modelling Cyclic Behaviour of Martensitic Steel with J2 Plasticity and Crystal Plasticity.
    Sajjad HM; Hanke S; Güler S; Ul Hassan H; Fischer A; Hartmaier A
    Materials (Basel); 2019 May; 12(11):. PubMed ID: 31159157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of Severe Plastic Deformation and Aging on Low Cycle Fatigue Behavior of Al-Mg-Si Alloys.
    Kim W; Kim K; Kim K
    Materials (Basel); 2024 May; 17(9):. PubMed ID: 38730954
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of Different Strain Hardening Models on the Behavior of Materials in the Elastic-Plastic Regime under Cyclic Loading.
    Sivák P; Frankovský P; Delyová I; Bocko J; Kostka J; Schürger B
    Materials (Basel); 2020 Nov; 13(23):. PubMed ID: 33255433
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cyclic deformation and fatigue data for Ti-6Al-4V ELI under variable amplitude loading.
    Carrion PE; Shamsaei N; Moser RD
    Data Brief; 2017 Aug; 13():180-186. PubMed ID: 28616449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Statistical Characterization of Strain-Controlled Low-Cycle Fatigue Behavior of Structural Steels and Aluminium Material.
    Bazaras Ž; Lukoševičius V
    Materials (Basel); 2022 Dec; 15(24):. PubMed ID: 36556614
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Static and Dynamic Properties of Al-Mg Alloys Subjected to Hydrostatic Extrusion.
    Jurczak W; Trzepieciński T; Kubit A; Bochnowski W
    Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35161007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fatigue resistance of cast occlusal rests using Co-Cr and Ag-Pd-Cu-Au alloys.
    Gapido CG; Kobayashi H; Miyakawa O; Kohno S
    J Prosthet Dent; 2003 Sep; 90(3):261-9. PubMed ID: 12942060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cyclic Deformation Behavior of A Heat-Treated Die-Cast Al-Mg-Si-Based Aluminum Alloy.
    Mohammed S; Gupta S; Li D; Zeng X; Chen D
    Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32947967
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fatigue data for polyether ether ketone (PEEK) under fully-reversed cyclic loading.
    Shrestha R; Simsiriwong J; Shamsaei N
    Data Brief; 2016 Mar; 6():881-4. PubMed ID: 26937465
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-Cycle Fatigue Behavior and the Combined Cyclic Hardening Material Model of Plate-Shaped Zn-22Al Alloy for Seismic Dampers.
    Liu Z; Han J; Yang P
    Materials (Basel); 2024 May; 17(9):. PubMed ID: 38730947
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Cycle Fatigue Behaviour of the Aluminium Alloy 5083-H111.
    Nečemer B; Zupanič F; Vuherer T; Glodež S
    Materials (Basel); 2023 Mar; 16(7):. PubMed ID: 37048978
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.