BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 31540955)

  • 1. The Parkinson's disease gene
    Furlong RM; Lindsay A; Anderson KE; Hawkins PT; Sullivan AM; O'Neill C
    J Cell Sci; 2019 Oct; 132(20):. PubMed ID: 31540955
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pink1 regulates FKBP5 interaction with AKT/PHLPP and protects neurons from neurotoxin stress induced by MPP
    Boonying W; Joselin A; Huang E; Qu D; Safarpour F; Iyirhiaro GO; Gonzalez YR; Callaghan SM; Slack RS; Figeys D; Chung YH; Park DS
    J Neurochem; 2019 Aug; 150(3):312-329. PubMed ID: 30734931
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alterations in α-synuclein and PINK1 expression reduce neurite length and induce mitochondrial fission and Golgi fragmentation in midbrain neurons.
    Furlong RM; O'Keeffe GW; O'Neill C; Sullivan AM
    Neurosci Lett; 2020 Feb; 720():134777. PubMed ID: 31978495
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative expression proteomics and phosphoproteomics profile of brain from PINK1 knockout mice: insights into mechanisms of familial Parkinson's disease.
    Triplett JC; Zhang Z; Sultana R; Cai J; Klein JB; Büeler H; Butterfield DA
    J Neurochem; 2015 Jun; 133(5):750-65. PubMed ID: 25626353
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new cytosolic pathway from a Parkinson disease-associated kinase, BRPK/PINK1: activation of AKT via mTORC2.
    Murata H; Sakaguchi M; Jin Y; Sakaguchi Y; Futami J; Yamada H; Kataoka K; Huh NH
    J Biol Chem; 2011 Mar; 286(9):7182-9. PubMed ID: 21177249
    [TBL] [Abstract][Full Text] [Related]  

  • 6. δ-Opioid Receptor Activation Attenuates Hypoxia/MPP
    Xu Y; Zhi F; Peng Y; Shao N; Khiati D; Balboni G; Yang Y; Xia Y
    Mol Neurobiol; 2019 Jan; 56(1):252-266. PubMed ID: 29687347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for a common biological pathway linking three Parkinson's disease-causing genes: parkin, PINK1 and DJ-1.
    van der Merwe C; Jalali Sefid Dashti Z; Christoffels A; Loos B; Bardien S
    Eur J Neurosci; 2015 May; 41(9):1113-25. PubMed ID: 25761903
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic mutations and functions of PINK1.
    Kawajiri S; Saiki S; Sato S; Hattori N
    Trends Pharmacol Sci; 2011 Oct; 32(10):573-80. PubMed ID: 21784538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformational sampling of membranes by Akt controls its activation and inactivation.
    Lučić I; Rathinaswamy MK; Truebestein L; Hamelin DJ; Burke JE; Leonard TA
    Proc Natl Acad Sci U S A; 2018 Apr; 115(17):E3940-E3949. PubMed ID: 29632185
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-term oral kinetin does not protect against α-synuclein-induced neurodegeneration in rodent models of Parkinson's disease.
    Orr AL; Rutaganira FU; de Roulet D; Huang EJ; Hertz NT; Shokat KM; Nakamura K
    Neurochem Int; 2017 Oct; 109():106-116. PubMed ID: 28434973
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of PI3K effector signalling in cancer by the phosphoinositide phosphatases.
    Rodgers SJ; Ferguson DT; Mitchell CA; Ooms LM
    Biosci Rep; 2017 Feb; 37(1):. PubMed ID: 28082369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PINK1 signalling in cancer biology.
    O'Flanagan CH; O'Neill C
    Biochim Biophys Acta; 2014 Dec; 1846(2):590-8. PubMed ID: 25450579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of autoinhibited Akt1 reveals mechanism of PIP
    Truebestein L; Hornegger H; Anrather D; Hartl M; Fleming KD; Stariha JTB; Pardon E; Steyaert J; Burke JE; Leonard TA
    Proc Natl Acad Sci U S A; 2021 Aug; 118(33):. PubMed ID: 34385319
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Endomembrane PtdIns(3,4,5)P3 activates the PI3K-Akt pathway.
    Jethwa N; Chung GH; Lete MG; Alonso A; Byrne RD; Calleja V; Larijani B
    J Cell Sci; 2015 Sep; 128(18):3456-65. PubMed ID: 26240177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. S-Nitrosylation of PINK1 Attenuates PINK1/Parkin-Dependent Mitophagy in hiPSC-Based Parkinson's Disease Models.
    Oh CK; Sultan A; Platzer J; Dolatabadi N; Soldner F; McClatchy DB; Diedrich JK; Yates JR; Ambasudhan R; Nakamura T; Jaenisch R; Lipton SA
    Cell Rep; 2017 Nov; 21(8):2171-2182. PubMed ID: 29166608
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondrial and cytosolic roles of PINK1 shape induced regulatory T-cell development and function.
    Ellis GI; Zhi L; Akundi R; Büeler H; Marti F
    Eur J Immunol; 2013 Dec; 43(12):3355-60. PubMed ID: 24037540
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidative stress alters the regulatory control of p66Shc and Akt in PINK1 deficient cells.
    Maj MC; Tkachyova I; Patel P; Addis JB; Mackay N; Levandovskiy V; Lee J; Lang AE; Cameron JM; Robinson BH
    Biochem Biophys Res Commun; 2010 Aug; 399(3):331-5. PubMed ID: 20637729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Interplay between Calmodulin and Membrane Interactions with the Pleckstrin Homology Domain of Akt.
    Agamasu C; Ghanam RH; Xu F; Sun Y; Chen Y; Saad JS
    J Biol Chem; 2017 Jan; 292(1):251-263. PubMed ID: 27872186
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Depletion of PINK1 affects mitochondrial metabolism, calcium homeostasis and energy maintenance.
    Heeman B; Van den Haute C; Aelvoet SA; Valsecchi F; Rodenburg RJ; Reumers V; Debyser Z; Callewaert G; Koopman WJ; Willems PH; Baekelandt V
    J Cell Sci; 2011 Apr; 124(Pt 7):1115-25. PubMed ID: 21385841
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parkinson's disease-associated PINK1 G309D mutation increases abnormal phosphorylation of Tau.
    Ye M; Zhou D; Zhou Y; Sun C
    IUBMB Life; 2015 Apr; 67(4):286-90. PubMed ID: 25899925
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.