These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 31540988)

  • 1. Using the Endogenous CRISPR-Cas System of
    Baker PL; Orf GS; Kevershan K; Pyne ME; Bicer T; Redding KE
    Appl Environ Microbiol; 2019 Dec; 85(23):. PubMed ID: 31540988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression and purification of affinity-tagged variants of the photochemical reaction center from Heliobacterium modesticaldum.
    Orf GS; Redding KE
    Photosynth Res; 2019 Dec; 142(3):335-348. PubMed ID: 31542861
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The PshX subunit of the photochemical reaction center from Heliobacterium modesticaldum acts as a low-energy antenna.
    Orf GS; Gisriel CJ; Granstrom J; Baker PL; Redding KE
    Photosynth Res; 2022 Jan; 151(1):11-30. PubMed ID: 34480322
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protospacer-Adjacent Motif Specificity during Clostridioides difficile Type I-B CRISPR-Cas Interference and Adaptation.
    Maikova A; Boudry P; Shiriaeva A; Vasileva A; Boutserin A; Medvedeva S; Semenova E; Severinov K; Soutourina O
    mBio; 2021 Aug; 12(4):e0213621. PubMed ID: 34425703
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Molecular Biology Tool Kit for the Phototrophic Firmicute Heliobacterium modesticaldum.
    Baker PL; Orf GS; Khan Z; Espinoza L; Leung S; Kevershan K; Redding KE
    Appl Environ Microbiol; 2019 Oct; 85(19):. PubMed ID: 31375483
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deletion of the cytochrome bc complex from Heliobacterium modesticaldum results in viable but non-phototrophic cells.
    Leung SW; Baker PL; Redding KE
    Photosynth Res; 2021 Jun; 148(3):137-152. PubMed ID: 34236566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploiting endogenous CRISPR-Cas system for multiplex genome editing in Clostridium tyrobutyricum and engineer the strain for high-level butanol production.
    Zhang J; Zong W; Hong W; Zhang ZT; Wang Y
    Metab Eng; 2018 May; 47():49-59. PubMed ID: 29530750
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The genome of Heliobacterium modesticaldum, a phototrophic representative of the Firmicutes containing the simplest photosynthetic apparatus.
    Sattley WM; Madigan MT; Swingley WD; Cheung PC; Clocksin KM; Conrad AL; Dejesa LC; Honchak BM; Jung DO; Karbach LE; Kurdoglu A; Lahiri S; Mastrian SD; Page LE; Taylor HL; Wang ZT; Raymond J; Chen M; Blankenship RE; Touchman JW
    J Bacteriol; 2008 Jul; 190(13):4687-96. PubMed ID: 18441057
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bacterial Genome Editing with CRISPR-Cas9: Deletion, Integration, Single Nucleotide Modification, and Desirable "Clean" Mutant Selection in Clostridium beijerinckii as an Example.
    Wang Y; Zhang ZT; Seo SO; Lynn P; Lu T; Jin YS; Blaschek HP
    ACS Synth Biol; 2016 Jul; 5(7):721-32. PubMed ID: 27115041
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extending CRISPR-Cas9 Technology from Genome Editing to Transcriptional Engineering in the Genus Clostridium.
    Bruder MR; Pyne ME; Moo-Young M; Chung DA; Chou CP
    Appl Environ Microbiol; 2016 Oct; 82(20):6109-6119. PubMed ID: 27496775
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple Applications of a Transient CRISPR-Cas9 Coupled with Electroporation (TRACE) System in the
    Fan Y; Lin X
    Genetics; 2018 Apr; 208(4):1357-1372. PubMed ID: 29444806
    [No Abstract]   [Full Text] [Related]  

  • 12. Harnessing heterologous and endogenous CRISPR-Cas machineries for efficient markerless genome editing in Clostridium.
    Pyne ME; Bruder MR; Moo-Young M; Chung DA; Chou CP
    Sci Rep; 2016 May; 6():25666. PubMed ID: 27157668
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Harnessing Type I and Type III CRISPR-Cas systems for genome editing.
    Li Y; Pan S; Zhang Y; Ren M; Feng M; Peng N; Chen L; Liang YX; She Q
    Nucleic Acids Res; 2016 Feb; 44(4):e34. PubMed ID: 26467477
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Advances in utilizing the endogenous CRISPR-Cas system for genome editing of lactic acid bacteria].
    Zhu Q; Xu C; Zhang S; Xie N; Pang X; Lü J
    Sheng Wu Gong Cheng Xue Bao; 2022 Jul; 38(7):2447-2458. PubMed ID: 35871616
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Avoidance of Trinucleotide Corresponding to Consensus Protospacer Adjacent Motif Controls the Efficiency of Prespacer Selection during Primed Adaptation.
    Musharova O; Vyhovskyi D; Medvedeva S; Guzina J; Zhitnyuk Y; Djordjevic M; Severinov K; Savitskaya E
    mBio; 2018 Dec; 9(6):. PubMed ID: 30514784
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional Analysis of Bacteriophage Immunity through a Type I-E CRISPR-Cas System in Vibrio cholerae and Its Application in Bacteriophage Genome Engineering.
    Box AM; McGuffie MJ; O'Hara BJ; Seed KD
    J Bacteriol; 2016 Feb; 198(3):578-90. PubMed ID: 26598368
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Survey of clustered regularly interspaced short palindromic repeats and their associated Cas proteins (CRISPR/Cas) systems in multiple sequenced strains of Klebsiella pneumoniae.
    Ostria-Hernández ML; Sánchez-Vallejo CJ; Ibarra JA; Castro-Escarpulli G
    BMC Res Notes; 2015 Aug; 8():332. PubMed ID: 26238567
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endogenous CRISPR/Cas systems for genome engineering in the acetogens
    Poulalier-Delavelle M; Baker JP; Millard J; Winzer K; Minton NP
    Front Bioeng Biotechnol; 2023; 11():1213236. PubMed ID: 37425362
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the Origin of Reverse Transcriptase-Using CRISPR-Cas Systems and Their Hyperdiverse, Enigmatic Spacer Repertoires.
    Silas S; Makarova KS; Shmakov S; Páez-Espino D; Mohr G; Liu Y; Davison M; Roux S; Krishnamurthy SR; Fu BXH; Hansen LL; Wang D; Sullivan MB; Millard A; Clokie MR; Bhaya D; Lambowitz AM; Kyrpides NC; Koonin EV; Fire AZ
    mBio; 2017 Jul; 8(4):. PubMed ID: 28698278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interference activity of a minimal Type I CRISPR-Cas system from Shewanella putrefaciens.
    Dwarakanath S; Brenzinger S; Gleditzsch D; Plagens A; Klingl A; Thormann K; Randau L
    Nucleic Acids Res; 2015 Oct; 43(18):8913-23. PubMed ID: 26350210
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.