These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
244 related articles for article (PubMed ID: 31541109)
1. Structure of Csx1-cOA Molina R; Stella S; Feng M; Sofos N; Jauniskis V; Pozdnyakova I; López-Méndez B; She Q; Montoya G Nat Commun; 2019 Sep; 10(1):4302. PubMed ID: 31541109 [TBL] [Abstract][Full Text] [Related]
2. Structural basis of cyclic oligoadenylate degradation by ancillary Type III CRISPR-Cas ring nucleases. Molina R; Jensen ALG; Marchena-Hurtado J; López-Méndez B; Stella S; Montoya G Nucleic Acids Res; 2021 Dec; 49(21):12577-12590. PubMed ID: 34850143 [TBL] [Abstract][Full Text] [Related]
3. Activation and self-inactivation mechanisms of the cyclic oligoadenylate-dependent CRISPR ribonuclease Csm6. Garcia-Doval C; Schwede F; Berk C; Rostøl JT; Niewoehner O; Tejero O; Hall J; Marraffini LA; Jinek M Nat Commun; 2020 Mar; 11(1):1596. PubMed ID: 32221291 [TBL] [Abstract][Full Text] [Related]
4. A Type III-B Cmr effector complex catalyzes the synthesis of cyclic oligoadenylate second messengers by cooperative substrate binding. Han W; Stella S; Zhang Y; Guo T; Sulek K; Peng-Lundgren L; Montoya G; She Q Nucleic Acids Res; 2018 Nov; 46(19):10319-10330. PubMed ID: 30239876 [TBL] [Abstract][Full Text] [Related]
5. Structural insight into the Csx1-Crn2 fusion self-limiting ribonuclease of type III CRISPR system. Zhang D; Du L; Gao H; Yuan C; Lin Z Nucleic Acids Res; 2024 Aug; 52(14):8419-8430. PubMed ID: 38967023 [TBL] [Abstract][Full Text] [Related]
6. The CRISPR-associated Csx1 protein of Pyrococcus furiosus is an adenosine-specific endoribonuclease. Sheppard NF; Glover CV; Terns RM; Terns MP RNA; 2016 Feb; 22(2):216-24. PubMed ID: 26647461 [TBL] [Abstract][Full Text] [Related]
7. CRISPR-Cas III-A Csm6 CARF Domain Is a Ring Nuclease Triggering Stepwise cA Jia N; Jones R; Yang G; Ouerfelli O; Patel DJ Mol Cell; 2019 Sep; 75(5):944-956.e6. PubMed ID: 31326273 [TBL] [Abstract][Full Text] [Related]
8. Regulation of cyclic oligoadenylate synthesis by the Nasef M; Muffly MC; Beckman AB; Rowe SJ; Walker FC; Hatoum-Aslan A; Dunkle JA RNA; 2019 Aug; 25(8):948-962. PubMed ID: 31076459 [TBL] [Abstract][Full Text] [Related]
9. Structural analyses of the CRISPR protein Csc2 reveal the RNA-binding interface of the type I-D Cas7 family. Hrle A; Maier LK; Sharma K; Ebert J; Basquin C; Urlaub H; Marchfelder A; Conti E RNA Biol; 2014; 11(8):1072-82. PubMed ID: 25483036 [TBL] [Abstract][Full Text] [Related]
10. Investigation of the cyclic oligoadenylate signaling pathway of type III CRISPR systems. Rouillon C; Athukoralage JS; Graham S; Grüschow S; White MF Methods Enzymol; 2019; 616():191-218. PubMed ID: 30691643 [TBL] [Abstract][Full Text] [Related]
11. A Type III CRISPR Ancillary Ribonuclease Degrades Its Cyclic Oligoadenylate Activator. Athukoralage JS; Graham S; Grüschow S; Rouillon C; White MF J Mol Biol; 2019 Jul; 431(15):2894-2899. PubMed ID: 31071326 [TBL] [Abstract][Full Text] [Related]
12. If You'd Like to Stop a Type III CRISPR Ribonuclease, Then You Should Put a Ring (Nuclease) on It. Mo CY; Marraffini LA Mol Cell; 2018 Nov; 72(4):608-609. PubMed ID: 30444997 [TBL] [Abstract][Full Text] [Related]
13. Ring nucleases deactivate type III CRISPR ribonucleases by degrading cyclic oligoadenylate. Athukoralage JS; Rouillon C; Graham S; Grüschow S; White MF Nature; 2018 Oct; 562(7726):277-280. PubMed ID: 30232454 [TBL] [Abstract][Full Text] [Related]
14. Structural basis for the endoribonuclease activity of the type III-A CRISPR-associated protein Csm6. Niewoehner O; Jinek M RNA; 2016 Mar; 22(3):318-29. PubMed ID: 26763118 [TBL] [Abstract][Full Text] [Related]
15. Fuse to defuse: a self-limiting ribonuclease-ring nuclease fusion for type III CRISPR defence. Samolygo A; Athukoralage JS; Graham S; White MF Nucleic Acids Res; 2020 Jun; 48(11):6149-6156. PubMed ID: 32347937 [TBL] [Abstract][Full Text] [Related]
16. Structure Studies of the CRISPR-Csm Complex Reveal Mechanism of Co-transcriptional Interference. You L; Ma J; Wang J; Artamonova D; Wang M; Liu L; Xiang H; Severinov K; Zhang X; Wang Y Cell; 2019 Jan; 176(1-2):239-253.e16. PubMed ID: 30503210 [TBL] [Abstract][Full Text] [Related]
17. Molecular basis of cyclic tetra-oligoadenylate processing by small standalone CRISPR-Cas ring nucleases. Molina R; Garcia-Martin R; López-Méndez B; Jensen ALG; Ciges-Tomas JR; Marchena-Hurtado J; Stella S; Montoya G Nucleic Acids Res; 2022 Oct; 50(19):11199-11213. PubMed ID: 36271789 [TBL] [Abstract][Full Text] [Related]
18. Second Messenger cA Jia N; Jones R; Sukenick G; Patel DJ Mol Cell; 2019 Sep; 75(5):933-943.e6. PubMed ID: 31326272 [TBL] [Abstract][Full Text] [Related]
19. Regulation of the RNA and DNA nuclease activities required for Pyrococcus furiosus Type III-B CRISPR-Cas immunity. Foster K; Grüschow S; Bailey S; White MF; Terns MP Nucleic Acids Res; 2020 May; 48(8):4418-4434. PubMed ID: 32198888 [TBL] [Abstract][Full Text] [Related]
20. Tetramerisation of the CRISPR ring nuclease Crn3/Csx3 facilitates cyclic oligoadenylate cleavage. Athukoralage JS; McQuarrie S; Grüschow S; Graham S; Gloster TM; White MF Elife; 2020 Jun; 9():. PubMed ID: 32597755 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]