These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 31541440)

  • 1. Genome-Wide Identification of Regulatory DNA Elements in Crop Plants.
    Li Z; Wang K
    Methods Mol Biol; 2020; 2072():85-99. PubMed ID: 31541440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-wide mapping of DNase I hypersensitive sites in plants.
    Zhang W; Jiang J
    Methods Mol Biol; 2015; 1284():71-89. PubMed ID: 25757768
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-Wide Mapping of DNase I Hypersensitive Sites in Tomato.
    Li R; Cui X
    Methods Mol Biol; 2018; 1830():367-379. PubMed ID: 30043382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-Wide Identification of DNase I Hypersensitive Sites in Plants.
    Wang Y; Wang K
    Curr Protoc; 2021 Jun; 1(6):e148. PubMed ID: 34101388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The 'dark matter' in the plant genomes: non-coding and unannotated DNA sequences associated with open chromatin.
    Jiang J
    Curr Opin Plant Biol; 2015 Apr; 24():17-23. PubMed ID: 25625239
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advances of DNase-seq for mapping active gene regulatory elements across the genome in animals.
    Chen A; Chen D; Chen Y
    Gene; 2018 Aug; 667():83-94. PubMed ID: 29772251
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide mapping of DNase I hypersensitive sites revealed differential chromatin accessibility and regulatory DNA elements under drought stress in rice cultivars.
    Rajkumar MS; Tembhare K; Garg R; Jain M
    Plant J; 2024 Aug; 119(4):2063-2079. PubMed ID: 38859561
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genomic Footprinting Analyses from DNase-seq Data to Construct Gene Regulatory Networks.
    Moyano TC; Gutiérrez RA; Alvarez JM
    Methods Mol Biol; 2021; 2328():25-46. PubMed ID: 34251618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide discovery of active regulatory elements and transcription factor footprints in
    Ho MCW; Quintero-Cadena P; Sternberg PW
    Genome Res; 2017 Dec; 27(12):2108-2119. PubMed ID: 29074739
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Open chromatin in plant genomes.
    Zhang W; Zhang T; Wu Y; Jiang J
    Cytogenet Genome Res; 2014; 143(1-3):18-27. PubMed ID: 24923879
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-scale identification of Caenorhabditis elegans regulatory elements by tiling-array mapping of DNase I hypersensitive sites.
    Shi B; Guo X; Wu T; Sheng S; Wang J; Skogerbø G; Zhu X; Chen R
    BMC Genomics; 2009 Feb; 10():92. PubMed ID: 19243610
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proliferation of Regulatory DNA Elements Derived from Transposable Elements in the Maize Genome.
    Zhao H; Zhang W; Chen L; Wang L; Marand AP; Wu Y; Jiang J
    Plant Physiol; 2018 Apr; 176(4):2789-2803. PubMed ID: 29463772
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-Wide Characterization of DNase I-Hypersensitive Sites and Cold Response Regulatory Landscapes in Grasses.
    Han J; Wang P; Wang Q; Lin Q; Chen Z; Yu G; Miao C; Dao Y; Wu R; Schnable JC; Tang H; Wang K
    Plant Cell; 2020 Aug; 32(8):2457-2473. PubMed ID: 32471863
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-throughput cis-regulatory element discovery in the vector mosquito Aedes aegypti.
    Behura SK; Sarro J; Li P; Mysore K; Severson DW; Emrich SJ; Duman-Scheel M
    BMC Genomics; 2016 May; 17():341. PubMed ID: 27161480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-scale mapping of DNase I hypersensitivity.
    John S; Sabo PJ; Canfield TK; Lee K; Vong S; Weaver M; Wang H; Vierstra J; Reynolds AP; Thurman RE; Stamatoyannopoulos JA
    Curr Protoc Mol Biol; 2013 Jul; Chapter 27():Unit 21.27. PubMed ID: 23821440
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNase I SIM: A Simplified In-Nucleus Method for DNase I Hypersensitive Site Sequencing.
    Filichkin SA; Megraw M
    Methods Mol Biol; 2017; 1629():141-154. PubMed ID: 28623584
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of DNase I hypersensitive sites in the human genome by multiple sequence descriptors.
    Jin YT; Tan Y; Gan ZH; Hao YD; Wang TY; Lin H; Tang B
    Methods; 2024 Sep; 229():125-132. PubMed ID: 38964595
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-Scale Analysis of Cell-Specific Regulatory Codes Using Nuclear Enzymes.
    Baek S; Sung MH
    Methods Mol Biol; 2016; 1418():225-40. PubMed ID: 27008018
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of novel transcription factors in osteoclast differentiation using genome-wide analysis of open chromatin determined by DNase-seq.
    Inoue K; Imai Y
    J Bone Miner Res; 2014 Aug; 29(8):1823-32. PubMed ID: 24677342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide DNase I-hypersensitive site assay reveals distinct genomic distributions and functional features of open chromatin in autopolyploid sugarcane.
    Yu G; Sun B; Zhu Z; Mehareb EM; Teng A; Han J; Zhang H; Liu J; Liu X; Raza G; Zhang B; Zhang Y; Wang K
    Plant J; 2024 Jan; 117(2):573-589. PubMed ID: 37897092
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.