These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 31541810)

  • 1. Size distribution of particulate matter in runoff from different leaf surfaces during controlled rainfall processes.
    Xu X; Yu X; Bao L; Desai AR
    Environ Pollut; 2019 Dec; 255(Pt 1):113234. PubMed ID: 31541810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of rainfall duration and intensity on particulate matter removal from plant leaves.
    Xu X; Zhang Z; Bao L; Mo L; Yu X; Fan D; Lun X
    Sci Total Environ; 2017 Dec; 609():11-16. PubMed ID: 28732292
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synergy of different leaf traits determines the particulate matter retention capacity and its susceptibility to rain wash-off.
    Xu L; He P; Duan Y; Yu Z; Yang F
    Sci Total Environ; 2024 Jan; 906():167365. PubMed ID: 37769719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Particulate matter transported from urban greening plants during precipitation events in Beijing, China.
    Cai M; Xin Z; Yu X
    Environ Pollut; 2019 Sep; 252(Pt B):1648-1658. PubMed ID: 31284207
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Particle removal in polluted cities: Insights from the wash-off process dynamics for different wetland plants.
    Yan G; Cong L; Zhai J; Wu Y; Dai L; Zhang Z
    J Environ Manage; 2019 Sep; 245():114-121. PubMed ID: 31150902
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The PM removal process of wetland plant leaves with different rainfall intensities and duration.
    Zhou S; Yan G; Wu Y; Zhai J; Cong L; Zhang Z
    J Environ Manage; 2020 Dec; 275():111239. PubMed ID: 32846360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A trait-based investigation into evergreen woody plants for traffic-related air pollution mitigation over time.
    Barwise Y; Kumar P; Abhijith KV; Gallagher J; McNabola A; Watts JF
    Sci Total Environ; 2024 Mar; 914():169713. PubMed ID: 38163588
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring the interplay between particulate matter capture, wash-off, and leaf traits in green wall species.
    Tomson M; Kumar P; Abhijith KV; Watts JF
    Sci Total Environ; 2024 Apr; 921():170950. PubMed ID: 38360301
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immobilized atmospheric particulate matter on leaves of 96 urban plant species.
    Muhammad S; Wuyts K; Samson R
    Environ Sci Pollut Res Int; 2020 Oct; 27(29):36920-36938. PubMed ID: 32572747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantifying particulate matter accumulated on leaves by 17 species of urban trees in Beijing, China.
    Xu Y; Xu W; Mo L; Heal MR; Xu X; Yu X
    Environ Sci Pollut Res Int; 2018 May; 25(13):12545-12556. PubMed ID: 29464604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Quantitative evaluation for separation of water-soluble and water-insoluble particulate matter on leaf surface of tree species: Taking five tree species as examples.].
    Liu JQ; Cao ZG; Guo ZM; Duan J; Kang J; Liu HH; Yan GX; Xi BY
    Ying Yong Sheng Tai Xue Bao; 2019 May; 30(5):1763-1771. PubMed ID: 31107033
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Consistency between deposition of particulate matter and its removal by rainfall from leaf surfaces in plant canopies.
    Zhou S; Cong L; Liu J; Zhang Z
    Ecotoxicol Environ Saf; 2022 Jul; 240():113679. PubMed ID: 35640352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potential of Thirteen Urban Greening Plants to Capture Particulate Matter on Leaf Surfaces across Three Levels of Ambient Atmospheric Pollution.
    Li Y; Wang S; Chen Q
    Int J Environ Res Public Health; 2019 Jan; 16(3):. PubMed ID: 30708968
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of weather, time, and pollution level on the amount of particulate matter deposited on leaves of Ligustrum lucidum.
    Wang H; Shi H; Wang Y
    ScientificWorldJournal; 2015; 2015():935942. PubMed ID: 25685849
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accumulation of particulate matter and trace elements on vegetation as affected by pollution level, rainfall and the passage of time.
    Przybysz A; Sæbø A; Hanslin HM; Gawroński SW
    Sci Total Environ; 2014 May; 481():360-9. PubMed ID: 24607629
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Transition of Particulate Pollutant in the Parcel-based Catchment of Sponge City].
    Li J; Xie WX; Jiang ZH; Shan XH; Liao YJ; Zhao HT; Li XY
    Huan Jing Ke Xue; 2020 Sep; 41(9):4113-4123. PubMed ID: 33124293
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Particulate matter and heavy metal deposition on the leaves of Euonymus japonicus during the East Asian monsoon in Beijing, China.
    Zhang T; Bai Y; Hong X; Sun L; Liu Y
    PLoS One; 2017; 12(6):e0179840. PubMed ID: 28662081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An investigation of the leaf retention capacity, efficiency and mechanism for atmospheric particulate matter of five greening tree species in Beijing, China.
    Liu J; Cao Z; Zou S; Liu H; Hai X; Wang S; Duan J; Xi B; Yan G; Zhang S; Jia Z
    Sci Total Environ; 2018 Mar; 616-617():417-426. PubMed ID: 29127795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Capacity of six shrub species to retain atmospheric particulates with different diameters.
    Sun X; Li H; Guo X; Sun Y; Li S
    Environ Sci Pollut Res Int; 2018 Jan; 25(3):2643-2650. PubMed ID: 29134522
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resuspension of settled atmospheric particulate matter on plant leaves determined by wind and leaf surface characteristics.
    Zheng G; Li P
    Environ Sci Pollut Res Int; 2019 Jul; 26(19):19606-19614. PubMed ID: 31079301
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.