These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 31541879)

  • 1. Deep neural network and data augmentation methodology for off-axis iris segmentation in wearable headsets.
    Varkarakis V; Bazrafkan S; Corcoran P
    Neural Netw; 2020 Jan; 121():101-121. PubMed ID: 31541879
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An end to end Deep Neural Network for iris segmentation in unconstrained scenarios.
    Bazrafkan S; Thavalengal S; Corcoran P
    Neural Netw; 2018 Oct; 106():79-95. PubMed ID: 30041104
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robust Iris Segmentation Algorithm in Non-Cooperative Environments Using Interleaved Residual U-Net.
    Li YH; Putri WR; Aslam MS; Chang CC
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33670827
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep neural networks for wearable sensor-based activity recognition in Parkinson's disease: investigating generalizability and model complexity.
    Davidashvilly S; Cardei M; Hssayeni M; Chi C; Ghoraani B
    Biomed Eng Online; 2024 Feb; 23(1):17. PubMed ID: 38336781
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feature Representation and Data Augmentation for Human Activity Classification Based on Wearable IMU Sensor Data Using a Deep LSTM Neural Network.
    Steven Eyobu O; Han DS
    Sensors (Basel); 2018 Aug; 18(9):. PubMed ID: 30200377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-Supervised Learning Framework toward State-of-the-Art Iris Image Segmentation.
    Putri WR; Liu SH; Aslam MS; Li YH; Chang CC; Wang JC
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336305
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Digital hair segmentation using hybrid convolutional and recurrent neural networks architecture.
    Attia M; Hossny M; Zhou H; Nahavandi S; Asadi H; Yazdabadi A
    Comput Methods Programs Biomed; 2019 Aug; 177():17-30. PubMed ID: 31319945
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Segmenting brain tumors from FLAIR MRI using fully convolutional neural networks.
    Ribalta Lorenzo P; Nalepa J; Bobek-Billewicz B; Wawrzyniak P; Mrukwa G; Kawulok M; Ulrych P; Hayball MP
    Comput Methods Programs Biomed; 2019 Jul; 176():135-148. PubMed ID: 31200901
    [TBL] [Abstract][Full Text] [Related]  

  • 9. IrisDenseNet: Robust Iris Segmentation Using Densely Connected Fully Convolutional Networks in the Images by Visible Light and Near-Infrared Light Camera Sensors.
    Arsalan M; Naqvi RA; Kim DS; Nguyen PH; Owais M; Park KR
    Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29748495
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A deep learning algorithm for one-step contour aware nuclei segmentation of histopathology images.
    Cui Y; Zhang G; Liu Z; Xiong Z; Hu J
    Med Biol Eng Comput; 2019 Sep; 57(9):2027-2043. PubMed ID: 31346949
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Redundant feature pruning for accelerated inference in deep neural networks.
    Ayinde BO; Inanc T; Zurada JM
    Neural Netw; 2019 Oct; 118():148-158. PubMed ID: 31279285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep Iris: Deep Learning for Gender Classification Through Iris Patterns.
    Khalifa NEM; Taha MHN; Hassanien AE; Mohamed HNET
    Acta Inform Med; 2019 Jun; 27(2):96-102. PubMed ID: 31452566
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tree-CNN: A hierarchical Deep Convolutional Neural Network for incremental learning.
    Roy D; Panda P; Roy K
    Neural Netw; 2020 Jan; 121():148-160. PubMed ID: 31563011
    [TBL] [Abstract][Full Text] [Related]  

  • 14. VoxResNet: Deep voxelwise residual networks for brain segmentation from 3D MR images.
    Chen H; Dou Q; Yu L; Qin J; Heng PA
    Neuroimage; 2018 Apr; 170():446-455. PubMed ID: 28445774
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fusion of Video and Inertial Sensing for Deep Learning-Based Human Action Recognition.
    Wei H; Jafari R; Kehtarnavaz N
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31450609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep learning and deep knowledge representation in Spiking Neural Networks for Brain-Computer Interfaces.
    Kumarasinghe K; Kasabov N; Taylor D
    Neural Netw; 2020 Jan; 121():169-185. PubMed ID: 31568895
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fully automatic multi-organ segmentation for head and neck cancer radiotherapy using shape representation model constrained fully convolutional neural networks.
    Tong N; Gou S; Yang S; Ruan D; Sheng K
    Med Phys; 2018 Oct; 45(10):4558-4567. PubMed ID: 30136285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wearable IoT Smart-Log Patch: An Edge Computing-Based Bayesian Deep Learning Network System for Multi Access Physical Monitoring System.
    Manogaran G; Shakeel PM; Fouad H; Nam Y; Baskar S; Chilamkurti N; Sundarasekar R
    Sensors (Basel); 2019 Jul; 19(13):. PubMed ID: 31324070
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scale-space approximated convolutional neural networks for retinal vessel segmentation.
    Noh KJ; Park SJ; Lee S
    Comput Methods Programs Biomed; 2019 Sep; 178():237-246. PubMed ID: 31416552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A dataset of laryngeal endoscopic images with comparative study on convolution neural network-based semantic segmentation.
    Laves MH; Bicker J; Kahrs LA; Ortmaier T
    Int J Comput Assist Radiol Surg; 2019 Mar; 14(3):483-492. PubMed ID: 30649670
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.