BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 31541916)

  • 1. Adsorption kinetics, thermodynamics, and isotherm studies for functionalized lanthanide-chelating resins.
    Callura JC; Perkins KM; Baltrus JP; Washburn NR; Dzombak DA; Karamalidis AK
    J Colloid Interface Sci; 2019 Dec; 557():465-477. PubMed ID: 31541916
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Critical review of functionalized silica sorbent strategies for selective extraction of rare earth elements from acid mine drainage.
    Wilfong WC; Ji T; Duan Y; Shi F; Wang Q; Gray ML
    J Hazard Mater; 2022 Feb; 424(Pt C):127625. PubMed ID: 34857400
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recovery of rare earth elements from acid mine drainage by ion exchange.
    Felipe ECB; Batista KA; Ladeira ACQ
    Environ Technol; 2021 Jul; 42(17):2721-2732. PubMed ID: 31933428
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorption characteristics of Cu(II) onto ion exchange resins 252H and 1500H: kinetics, isotherms and error analysis.
    Rengaraj S; Yeon JW; Kim Y; Jung Y; Ha YK; Kim WH
    J Hazard Mater; 2007 May; 143(1-2):469-77. PubMed ID: 17097805
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Evaluation of Performance of an Aminated Rosin-based Resin for Adsorption of Norfloxacin from Aqueous Solutions].
    Ma YH; Huang WT; Diao KS; Li PF; Tan XC; Dong HY; Qin FK; Lei FH; Liu SG
    Huan Jing Ke Xue; 2018 Jan; 39(1):161-169. PubMed ID: 29965678
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective Adsorption of Rare Earth Elements over Functionalized Cr-MIL-101.
    Lee YR; Yu K; Ravi S; Ahn WS
    ACS Appl Mater Interfaces; 2018 Jul; 10(28):23918-23927. PubMed ID: 29924930
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective Extraction of Heavy and Light Lanthanides from Aqueous Solution by Advanced Magnetic Nanosorbents.
    Zhang H; McDowell RG; Martin LR; Qiang Y
    ACS Appl Mater Interfaces; 2016 Apr; 8(14):9523-31. PubMed ID: 27018913
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adsorption of aqueous neodymium, europium, gadolinium, terbium, and yttrium ions onto nZVI-montmorillonite: kinetics, thermodynamic mechanism, and the influence of coexisting ions.
    Wang J
    Environ Sci Pollut Res Int; 2018 Nov; 25(33):33521-33537. PubMed ID: 30267348
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kafirin adsorption on ion-exchange resins: isotherm and kinetic studies.
    Kumar P; Lau PW; Kale S; Johnson S; Pareek V; Utikar R; Lali A
    J Chromatogr A; 2014 Aug; 1356():105-16. PubMed ID: 25022481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of thiocyanate from aqueous solutions by ion exchange.
    Dizge N; Demirbas E; Kobya M
    J Hazard Mater; 2009 Jul; 166(2-3):1367-76. PubMed ID: 19157695
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sorption of Ni(II) ions from aqueous solution by Lewatit cation-exchange resin.
    Dizge N; Keskinler B; Barlas H
    J Hazard Mater; 2009 Aug; 167(1-3):915-26. PubMed ID: 19231079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid removal of copper with magnetic poly-acrylic weak acid resin: quantitative role of bead radius on ion exchange.
    Fu L; Shuang C; Liu F; Li A; Li Y; Zhou Y; Song H
    J Hazard Mater; 2014 May; 272():102-11. PubMed ID: 24681592
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of Jordanian and standard diatomaceous earth as an adsorbent for removal of Sm(III) and Nd(III) from aqueous solution.
    Hamadneh I; Alatawi A; Zalloum R; Albuqain R; Alsotari S; Khalili FI; Al-Dujaili AH
    Environ Sci Pollut Res Int; 2019 Jul; 26(20):20969-20980. PubMed ID: 31115818
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acrylic Acid-Functionalized Metal-Organic Frameworks for Sc(III) Selective Adsorption.
    Lou Z; Xiao X; Huang M; Wang Y; Xing Z; Xiong Y
    ACS Appl Mater Interfaces; 2019 Mar; 11(12):11772-11781. PubMed ID: 30852887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphorus-modified poly(styrene-co-divinylbenzene)-PAMAM chelating resin for the adsorption of uranium(VI) in aqueous.
    Cao Q; Liu Y; Wang C; Cheng J
    J Hazard Mater; 2013 Dec; 263 Pt 2():311-21. PubMed ID: 23790513
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adsorption of Rare Earth Elements onto DNA-Functionalized Mesoporous Carbon.
    Unsworth CE; Kuo CC; Kuzmin A; Khalid S; Saha D
    ACS Appl Mater Interfaces; 2020 Sep; 12(38):43180-43190. PubMed ID: 32859130
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phenol removal from aqueous solution by adsorption and ion exchange mechanisms onto polymeric resins.
    Caetano M; Valderrama C; Farran A; Cortina JL
    J Colloid Interface Sci; 2009 Oct; 338(2):402-9. PubMed ID: 19679317
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of chelating ion-exchange resins for separating Cr(III) from industrial effluents.
    Cavaco SA; Fernandes S; Augusto CM; Quina MJ; Gando-Ferreira LM
    J Hazard Mater; 2009 Sep; 169(1-3):516-23. PubMed ID: 19406569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tailoring Nanoadsorbent Surfaces: Separation of Rare Earths and Late Transition Metals in Recycling of Magnet Materials.
    Vardanyan A; Guillon A; Budnyak T; Seisenbaeva GA
    Nanomaterials (Basel); 2022 Mar; 12(6):. PubMed ID: 35335787
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recovery and separation of rare Earth elements using salmon milt.
    Takahashi Y; Kondo K; Miyaji A; Watanabe Y; Fan Q; Honma T; Tanaka K
    PLoS One; 2014; 9(12):e114858. PubMed ID: 25490035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.