These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 31541943)

  • 1. The extended chondrocyte lineage: implications for skeletal homeostasis and disorders.
    Tsang KY; Cheah KS
    Curr Opin Cell Biol; 2019 Dec; 61():132-140. PubMed ID: 31541943
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fate of growth plate hypertrophic chondrocytes: death or lineage extension?
    Tsang KY; Chan D; Cheah KS
    Dev Growth Differ; 2015 Feb; 57(2):179-92. PubMed ID: 25714187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chondrocyte hypertrophy in skeletal development, growth, and disease.
    Sun MM; Beier F
    Birth Defects Res C Embryo Today; 2014 Mar; 102(1):74-82. PubMed ID: 24677724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hypertrophic chondrocytes can become osteoblasts and osteocytes in endochondral bone formation.
    Yang L; Tsang KY; Tang HC; Chan D; Cheah KS
    Proc Natl Acad Sci U S A; 2014 Aug; 111(33):12097-102. PubMed ID: 25092332
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptional regulators of chondrocyte hypertrophy.
    Solomon LA; Bérubé NG; Beier F
    Birth Defects Res C Embryo Today; 2008 Jun; 84(2):123-30. PubMed ID: 18546336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The chondrocytic journey in endochondral bone growth and skeletal dysplasia.
    Tsang KY; Tsang SW; Chan D; Cheah KS
    Birth Defects Res C Embryo Today; 2014 Mar; 102(1):52-73. PubMed ID: 24677723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bone development.
    Olsen BR; Reginato AM; Wang W
    Annu Rev Cell Dev Biol; 2000; 16():191-220. PubMed ID: 11031235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ihha induces hybrid cartilage-bone cells during zebrafish jawbone regeneration.
    Paul S; Schindler S; Giovannone D; de Millo Terrazzani A; Mariani FV; Crump JG
    Development; 2016 Jun; 143(12):2066-76. PubMed ID: 27122168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sox5 and Sox6 are needed to develop and maintain source, columnar, and hypertrophic chondrocytes in the cartilage growth plate.
    Smits P; Dy P; Mitra S; Lefebvre V
    J Cell Biol; 2004 Mar; 164(5):747-58. PubMed ID: 14993235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Notch pathway regulation of chondrocyte differentiation and proliferation during appendicular and axial skeleton development.
    Mead TJ; Yutzey KE
    Proc Natl Acad Sci U S A; 2009 Aug; 106(34):14420-5. PubMed ID: 19590010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dlx5 is a positive regulator of chondrocyte differentiation during endochondral ossification.
    Ferrari D; Kosher RA
    Dev Biol; 2002 Dec; 252(2):257-70. PubMed ID: 12482714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Runx3 regulates chondrocyte phenotype by controlling multiple genes involved in chondrocyte proliferation and differentiation.
    Zhou Z; Yao B; Zhao D
    Mol Biol Rep; 2020 Aug; 47(8):5773-5792. PubMed ID: 32661874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Endochondral ossification: how cartilage is converted into bone in the developing skeleton.
    Mackie EJ; Ahmed YA; Tatarczuch L; Chen KS; Mirams M
    Int J Biochem Cell Biol; 2008; 40(1):46-62. PubMed ID: 17659995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Programmed conversion of hypertrophic chondrocytes into osteoblasts and marrow adipocytes within zebrafish bones.
    Giovannone D; Paul S; Schindler S; Arata C; Farmer DT; Patel P; Smeeton J; Crump JG
    Elife; 2019 Feb; 8():. PubMed ID: 30785394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Formation of the Epiphyseal Bone Plate Occurs via Combined Endochondral and Intramembranous-Like Ossification.
    Fernández-Iglesias Á; Fuente R; Gil-Peña H; Alonso-Durán L; Santos F; López JM
    Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33477458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of the endochondral skeleton.
    Long F; Ornitz DM
    Cold Spring Harb Perspect Biol; 2013 Jan; 5(1):a008334. PubMed ID: 23284041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hes1 marks peri-condensation mesenchymal cells that generate both chondrocytes and perichondrial cells in early bone development.
    Matsushita Y; Manabe H; Ohyama T; Nakamura S; Nagata M; Ono W; Ono N
    J Biol Chem; 2023 Jun; 299(6):104805. PubMed ID: 37172728
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The hedgehog target Vlk genetically interacts with Gli3 to regulate chondrocyte differentiation during mouse long bone development.
    Probst S; Zeller R; Zuniga A
    Differentiation; 2013; 85(4-5):121-30. PubMed ID: 23792766
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulatory mechanisms in the pathways of cartilage and bone formation.
    de Crombrugghe B; Lefebvre V; Nakashima K
    Curr Opin Cell Biol; 2001 Dec; 13(6):721-7. PubMed ID: 11698188
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fibroblast growth factor receptor 1 signaling in the osteo-chondrogenic cell lineage regulates sequential steps of osteoblast maturation.
    Jacob AL; Smith C; Partanen J; Ornitz DM
    Dev Biol; 2006 Aug; 296(2):315-28. PubMed ID: 16815385
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.