These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 31542033)
1. Charge-transfer excited states in the donor/acceptor interface from large-scale GW calculations. Fujita T; Noguchi Y; Hoshi T J Chem Phys; 2019 Sep; 151(11):114109. PubMed ID: 31542033 [TBL] [Abstract][Full Text] [Related]
2. Thousand-atom ab initio calculations of excited states at organic/organic interfaces: toward first-principles investigations of charge photogeneration. Fujita T; Alam MK; Hoshi T Phys Chem Chem Phys; 2018 Nov; 20(41):26443-26452. PubMed ID: 30306163 [TBL] [Abstract][Full Text] [Related]
3. Revisiting the Charge-Transfer States at Pentacene/C Fujita T; Noguchi Y; Hoshi T Materials (Basel); 2020 Jun; 13(12):. PubMed ID: 32560127 [TBL] [Abstract][Full Text] [Related]
4. Fragment-Based Excited-State Calculations Using the GW Approximation and the Bethe-Salpeter Equation. Fujita T; Noguchi Y J Phys Chem A; 2021 Dec; 125(49):10580-10592. PubMed ID: 34871000 [TBL] [Abstract][Full Text] [Related]
5. Charge-transfer excitons at organic semiconductor surfaces and interfaces. Zhu XY; Yang Q; Muntwiler M Acc Chem Res; 2009 Nov; 42(11):1779-87. PubMed ID: 19378979 [TBL] [Abstract][Full Text] [Related]
6. Accuracy Assessment of GW Starting Points for Calculating Molecular Excitation Energies Using the Bethe-Salpeter Formalism. Gui X; Holzer C; Klopper W J Chem Theory Comput; 2018 Apr; 14(4):2127-2136. PubMed ID: 29499116 [TBL] [Abstract][Full Text] [Related]
7. Polarization Energies at Organic-Organic Interfaces: Impact on the Charge Separation Barrier at Donor-Acceptor Interfaces in Organic Solar Cells. Ryno SM; Fu YT; Risko C; Brédas JL ACS Appl Mater Interfaces; 2016 Jun; 8(24):15524-34. PubMed ID: 27244215 [TBL] [Abstract][Full Text] [Related]
8. Excitation Energies from the Single-Particle Green's Function with the GW Approximation. Jin Y; Yang W J Phys Chem A; 2019 Apr; 123(14):3199-3204. PubMed ID: 30920830 [TBL] [Abstract][Full Text] [Related]
9. Charge-Transfer States in Organic Solar Cells: Understanding the Impact of Polarization, Delocalization, and Disorder. Zheng Z; Tummala NR; Fu YT; Coropceanu V; Brédas JL ACS Appl Mater Interfaces; 2017 May; 9(21):18095-18102. PubMed ID: 28481497 [TBL] [Abstract][Full Text] [Related]
10. Quantifying charge transfer energies at donor-acceptor interfaces in small-molecule solar cells with constrained DFTB and spectroscopic methods. Scholz R; Luschtinetz R; Seifert G; Jägeler-Hoheisel T; Körner C; Leo K; Rapacioli M J Phys Condens Matter; 2013 Nov; 25(47):473201. PubMed ID: 24135026 [TBL] [Abstract][Full Text] [Related]
11. Effect of geometrical orientation on the charge-transfer energetics of supramolecular (tetraphenyl)-porphyrin∕C60 dyads. Olguin M; Zope RR; Baruah T J Chem Phys; 2013 Feb; 138(7):074306. PubMed ID: 23445008 [TBL] [Abstract][Full Text] [Related]
12. The crucial role of a spacer material on the efficiency of charge transfer processes in organic donor-acceptor junction solar cells. Nieman R; Tsai H; Nie W; Aquino AJA; Mohite AD; Tretiak S; Li H; Lischka H Nanoscale; 2017 Dec; 10(1):451-459. PubMed ID: 29227494 [TBL] [Abstract][Full Text] [Related]
13. Many-body Green's function GW and Bethe-Salpeter study of the optical excitations in a paradigmatic model dipeptide. Faber C; Boulanger P; Duchemin I; Attaccalite C; Blase X J Chem Phys; 2013 Nov; 139(19):194308. PubMed ID: 24320327 [TBL] [Abstract][Full Text] [Related]
14. DFT Calculations on Charge-Transfer States of a Carotenoid-Porphyrin-C60 Molecular Triad. Baruah T; Pederson MR J Chem Theory Comput; 2009 Apr; 5(4):834-43. PubMed ID: 26609590 [TBL] [Abstract][Full Text] [Related]
15. Description of the Charge Transfer States at the Pentacene/C60 Interface: Combining Range-Separated Hybrid Functionals with the Polarizable Continuum Model. Zheng Z; Brédas JL; Coropceanu V J Phys Chem Lett; 2016 Jul; 7(13):2616-21. PubMed ID: 27338105 [TBL] [Abstract][Full Text] [Related]
16. Prediction of the lowest charge-transfer excited-state energy at the donor-acceptor interface in a condensed phase using ground-state DFT calculations with generalized Kohn-Sham functionals. Zheng S; Xiao M; Tian Y; Chen X J Mol Model; 2017 Aug; 23(8):235. PubMed ID: 28733882 [TBL] [Abstract][Full Text] [Related]
17. Benchmarking the GW Approximation and Bethe-Salpeter Equation for Groups IB and IIB Atoms and Monoxides. Hung L; Bruneval F; Baishya K; Öğüt S J Chem Theory Comput; 2017 May; 13(5):2135-2146. PubMed ID: 28387124 [TBL] [Abstract][Full Text] [Related]
18. Electronic Excitations in Push-Pull Oligomers and Their Complexes with Fullerene from Many-Body Green's Functions Theory with Polarizable Embedding. Baumeier B; Rohlfing M; Andrienko D J Chem Theory Comput; 2014 Aug; 10(8):3104-10. PubMed ID: 26588281 [TBL] [Abstract][Full Text] [Related]
19. Koopmans Meets Bethe-Salpeter: Excitonic Optical Spectra without GW. Elliott JD; Colonna N; Marsili M; Marzari N; Umari P J Chem Theory Comput; 2019 Jun; 15(6):3710-3720. PubMed ID: 30998361 [TBL] [Abstract][Full Text] [Related]
20. "Hot or cold": how do charge transfer states at the donor-acceptor interface of an organic solar cell dissociate? Bässler H; Köhler A Phys Chem Chem Phys; 2015 Nov; 17(43):28451-62. PubMed ID: 26456722 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]