These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 31542047)

  • 1. Modification of O and CO binding on Pt nanoparticles due to electronic and structural effects of titania supports.
    Ellaby T; Briquet L; Sarwar M; Thompsett D; Skylaris CK
    J Chem Phys; 2019 Sep; 151(11):114702. PubMed ID: 31542047
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ethanol, O, and CO adsorption on Pt nanoparticles: effects of nanoparticle size and graphene support.
    G Verga L; Russell AE; Skylaris CK
    Phys Chem Chem Phys; 2018 Oct; 20(40):25918-25930. PubMed ID: 30289424
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ion-Exchange Loading Promoted Stability of Platinum Catalysts Supported on Layered Protonated Titanate-Derived Titania Nanoarrays.
    Lu X; Tang W; Du S; Wen L; Weng J; Ding Y; Willis WS; Suib SL; Gao PX
    ACS Appl Mater Interfaces; 2019 Jun; 11(24):21515-21525. PubMed ID: 31132239
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence of a strong effect of defect-free metal oxide supports on Pt nanoparticles.
    Moradabadi A; Ahmadi S; Kaghazchi P
    Nanoscale; 2017 Mar; 9(13):4478-4485. PubMed ID: 28304408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalyst Architecture for Stable Single Atom Dispersion Enables Site-Specific Spectroscopic and Reactivity Measurements of CO Adsorbed to Pt Atoms, Oxidized Pt Clusters, and Metallic Pt Clusters on TiO
    DeRita L; Dai S; Lopez-Zepeda K; Pham N; Graham GW; Pan X; Christopher P
    J Am Chem Soc; 2017 Oct; 139(40):14150-14165. PubMed ID: 28902501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insights into Spectator-Directed Catalysis: CO Adsorption on Amine-Capped Platinum Nanoparticles on Oxide Supports.
    Siemer M; Tomaschun G; Klüner T; Christopher P; Al-Shamery K
    ACS Appl Mater Interfaces; 2020 Jun; 12(24):27765-27776. PubMed ID: 32432456
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DFT calculation of oxygen adsorption on platinum nanoparticles: coverage and size effects.
    Verga LG; Aarons J; Sarwar M; Thompsett D; Russell AE; Skylaris CK
    Faraday Discuss; 2018 Sep; 208(0):497-522. PubMed ID: 29808835
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Density functional study of the interfacial electron transfer pathway for monolayer-adsorbed InN on the TiO(2) anatase (101) surface.
    Lin JS; Chou WC; Lu SY; Jang GJ; Tseng BR; Li YT
    J Phys Chem B; 2006 Nov; 110(46):23460-6. PubMed ID: 17107198
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The energetics of supported metal nanoparticles: relationships to sintering rates and catalytic activity.
    Campbell CT
    Acc Chem Res; 2013 Aug; 46(8):1712-9. PubMed ID: 23607711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Platinum-based oxygen reduction electrocatalysts.
    Wu J; Yang H
    Acc Chem Res; 2013 Aug; 46(8):1848-57. PubMed ID: 23808919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. First principles study of oxygen adsorption on Se-modified Ru nanoparticles.
    Zuluaga S; Stolbov S
    J Phys Condens Matter; 2012 Aug; 24(34):345303. PubMed ID: 22871976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical Investigation of the Adsorption Properties of CO, NO, and OH on Monometallic and Bimetallic 13-Atom Clusters: The Example of Cu13, Pt7Cu6, and Pt13.
    Chaves AS; Piotrowski MJ; Guedes-Sobrinho D; Da Silva JL
    J Phys Chem A; 2015 Nov; 119(47):11565-73. PubMed ID: 26524466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Density Functional Theory and Machine Learning Description and Prediction of Oxygen Atom Chemisorption on Platinum Surfaces and Nanoparticles.
    Rivera Rocabado DS; Nanba Y; Koyama M
    ACS Omega; 2021 Jul; 6(27):17424-17432. PubMed ID: 34278128
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reactivity of chemisorbed oxygen atoms and their catalytic consequences during CH4-O2 catalysis on supported Pt clusters.
    Chin YH; Buda C; Neurock M; Iglesia E
    J Am Chem Soc; 2011 Oct; 133(40):15958-78. PubMed ID: 21919447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of Pt clusters with the anatase TiO(2)(101) surface: a first principles study.
    Han Y; Liu CJ; Ge Q
    J Phys Chem B; 2006 Apr; 110(14):7463-72. PubMed ID: 16599526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Counting electrons on supported nanoparticles.
    Lykhach Y; Kozlov SM; Skála T; Tovt A; Stetsovych V; Tsud N; Dvořák F; Johánek V; Neitzel A; Mysliveček J; Fabris S; Matolín V; Neyman KM; Libuda J
    Nat Mater; 2016 Mar; 15(3):284-8. PubMed ID: 26657332
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemisorption of CO and mechanism of CO oxidation on supported platinum nanoclusters.
    Allian AD; Takanabe K; Fujdala KL; Hao X; Truex TJ; Cai J; Buda C; Neurock M; Iglesia E
    J Am Chem Soc; 2011 Mar; 133(12):4498-517. PubMed ID: 21366255
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atomically Dispersed Pt
    Zhang B; Sun G; Ding S; Asakura H; Zhang J; Sautet P; Yan N
    J Am Chem Soc; 2019 May; 141(20):8185-8197. PubMed ID: 31030515
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dispersion and stability mechanism of Pt nanoparticles on transition-metal oxides.
    Jeong ES; Hwang IH; Han SW
    Sci Rep; 2022 Aug; 12(1):13652. PubMed ID: 35953693
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular metal catalysts on supports: organometallic chemistry meets surface science.
    Serna P; Gates BC
    Acc Chem Res; 2014 Aug; 47(8):2612-20. PubMed ID: 25036259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.