These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
251 related articles for article (PubMed ID: 31542515)
1. In situ thermal ablation of tumors in combination with nano-adjuvant and immune checkpoint blockade to inhibit cancer metastasis and recurrence. Han X; Wang R; Xu J; Chen Q; Liang C; Chen J; Zhao J; Chu J; Fan Q; Archibong E; Jiang L; Wang C; Liu Z Biomaterials; 2019 Dec; 224():119490. PubMed ID: 31542515 [TBL] [Abstract][Full Text] [Related]
2. Le QV; Suh J; Choi JJ; Park GT; Lee JW; Shim G; Oh YK ACS Nano; 2019 Jul; 13(7):7442-7462. PubMed ID: 31180642 [TBL] [Abstract][Full Text] [Related]
3. Checkpoint blockade and nanosonosensitizer-augmented noninvasive sonodynamic therapy combination reduces tumour growth and metastases in mice. Yue W; Chen L; Yu L; Zhou B; Yin H; Ren W; Liu C; Guo L; Zhang Y; Sun L; Zhang K; Xu H; Chen Y Nat Commun; 2019 May; 10(1):2025. PubMed ID: 31048681 [TBL] [Abstract][Full Text] [Related]
4. Immune Adjuvant Activity of Pre-Resectional Radiofrequency Ablation Protects against Local and Systemic Recurrence in Aggressive Murine Colorectal Cancer. Ito F; Ku AW; Bucsek MJ; Muhitch JB; Vardam-Kaur T; Kim M; Fisher DT; Camoriano M; Khoury T; Skitzki JJ; Gollnick SO; Evans SS PLoS One; 2015; 10(11):e0143370. PubMed ID: 26599402 [TBL] [Abstract][Full Text] [Related]
5. Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy. Chen Q; Xu L; Liang C; Wang C; Peng R; Liu Z Nat Commun; 2016 Oct; 7():13193. PubMed ID: 27767031 [TBL] [Abstract][Full Text] [Related]
6. Intravenous injection of the oncolytic virus M1 awakens antitumor T cells and overcomes resistance to checkpoint blockade. Liu Y; Cai J; Liu W; Lin Y; Guo L; Liu X; Qin Z; Xu C; Zhang Y; Su X; Deng K; Yan G; Liang J Cell Death Dis; 2020 Dec; 11(12):1062. PubMed ID: 33311488 [TBL] [Abstract][Full Text] [Related]
7. Localized cocktail chemoimmunotherapy after in situ gelation to trigger robust systemic antitumor immune responses. Chao Y; Liang C; Tao H; Du Y; Wu D; Dong Z; Jin Q; Chen G; Xu J; Xiao Z; Chen Q; Wang C; Chen J; Liu Z Sci Adv; 2020 Mar; 6(10):eaaz4204. PubMed ID: 32181368 [TBL] [Abstract][Full Text] [Related]
8. Nanoparticle-Enhanced Radiotherapy to Trigger Robust Cancer Immunotherapy. Chen Q; Chen J; Yang Z; Xu J; Xu L; Liang C; Han X; Liu Z Adv Mater; 2019 Mar; 31(10):e1802228. PubMed ID: 30663118 [TBL] [Abstract][Full Text] [Related]
9. Near-Infrared-Triggered Photodynamic Therapy with Multitasking Upconversion Nanoparticles in Combination with Checkpoint Blockade for Immunotherapy of Colorectal Cancer. Xu J; Xu L; Wang C; Yang R; Zhuang Q; Han X; Dong Z; Zhu W; Peng R; Liu Z ACS Nano; 2017 May; 11(5):4463-4474. PubMed ID: 28362496 [TBL] [Abstract][Full Text] [Related]
10. Overcoming T Cell Exhaustion in Tumor Microenvironment via Immune Checkpoint Modulation with Nano-Delivery Systems for Enhanced Immunotherapy. Huang X; Zhang W Small Methods; 2024 Aug; 8(8):e2301326. PubMed ID: 38040834 [TBL] [Abstract][Full Text] [Related]
11. Iron Nanoparticles for Low-Power Local Magnetic Hyperthermia in Combination with Immune Checkpoint Blockade for Systemic Antitumor Therapy. Chao Y; Chen G; Liang C; Xu J; Dong Z; Han X; Wang C; Liu Z Nano Lett; 2019 Jul; 19(7):4287-4296. PubMed ID: 31132270 [TBL] [Abstract][Full Text] [Related]
12. Ferrimagnetic Vortex Nanoring-Mediated Mild Magnetic Hyperthermia Imparts Potent Immunological Effect for Treating Cancer Metastasis. Liu X; Zheng J; Sun W; Zhao X; Li Y; Gong N; Wang Y; Ma X; Zhang T; Zhao LY; Hou Y; Wu Z; Du Y; Fan H; Tian J; Liang XJ ACS Nano; 2019 Aug; 13(8):8811-8825. PubMed ID: 31328922 [TBL] [Abstract][Full Text] [Related]
13. Combined Magnetic Hyperthermia and Immune Therapy for Primary and Metastatic Tumor Treatments. Pan J; Hu P; Guo Y; Hao J; Ni D; Xu Y; Bao Q; Yao H; Wei C; Wu Q; Shi J ACS Nano; 2020 Jan; 14(1):1033-1044. PubMed ID: 31935064 [TBL] [Abstract][Full Text] [Related]
14. Combining photothermal therapy and immunotherapy against melanoma by polydopamine-coated Al Chen W; Qin M; Chen X; Wang Q; Zhang Z; Sun X Theranostics; 2018; 8(8):2229-2241. PubMed ID: 29721075 [TBL] [Abstract][Full Text] [Related]
15. Syringeable immunotherapeutic nanogel reshapes tumor microenvironment and prevents tumor metastasis and recurrence. Song C; Phuengkham H; Kim YS; Dinh VV; Lee I; Shin IW; Shin HS; Jin SM; Um SH; Lee H; Hong KS; Jin SM; Lee E; Kang TH; Park YM; Lim YT Nat Commun; 2019 Aug; 10(1):3745. PubMed ID: 31431623 [TBL] [Abstract][Full Text] [Related]
16. Nano-Immune-Engineering Approaches to Advance Cancer Immunotherapy: Lessons from Ultra-pH-Sensitive Nanoparticles. Li S; Bennett ZT; Sumer BD; Gao J Acc Chem Res; 2020 Nov; 53(11):2546-2557. PubMed ID: 33063517 [TBL] [Abstract][Full Text] [Related]
17. A photo-responsive self-healing hydrogel loaded with immunoadjuvants and MoS Wang S; Qian Z; Xiao H; Yang G; Zhu Z; Gu Y; Song J; Zhang X; Huang X; Weng L; Gao Y; Yang W; Wang L Nanoscale; 2024 May; 16(17):8417-8426. PubMed ID: 38591110 [TBL] [Abstract][Full Text] [Related]
18. Engineering nanoparticles to locally activate T cells in the tumor microenvironment. Wang D; Wang T; Yu H; Feng B; Zhou L; Zhou F; Hou B; Zhang H; Luo M; Li Y Sci Immunol; 2019 Jul; 4(37):. PubMed ID: 31300478 [TBL] [Abstract][Full Text] [Related]
19. Surface-Functionalized Modified Copper Sulfide Nanoparticles Enhance Checkpoint Blockade Tumor Immunotherapy by Photothermal Therapy and Antigen Capturing. Wang R; He Z; Cai P; Zhao Y; Gao L; Yang W; Zhao Y; Gao X; Gao F ACS Appl Mater Interfaces; 2019 Apr; 11(15):13964-13972. PubMed ID: 30912920 [TBL] [Abstract][Full Text] [Related]
20. A combination of immunoadjuvant nanocomplexes and dendritic cell vaccines in the presence of immune checkpoint blockade for effective cancer immunotherapy. Vo MC; Ahn SY; Chu TH; Uthaman S; Pillarisetti S; Uong TNT; Lakshmi TJ; Kim M; Song GY; Jung SH; Yang DH; Ahn JS; Kim HJ; Park IK; Lee JJ Cell Mol Immunol; 2021 Jun; 18(6):1599-1601. PubMed ID: 33782574 [No Abstract] [Full Text] [Related] [Next] [New Search]