BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 31542573)

  • 1. Visual vs vibrotactile feedback for posture assessment during upper-limb robot-aided rehabilitation.
    Scotto di Luzio F; Lauretti C; Cordella F; Draicchio F; Zollo L
    Appl Ergon; 2020 Jan; 82():102950. PubMed ID: 31542573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robot-Aided Upper-limb Proprioceptive Training in Three-Dimensional Space.
    Valdes BA; Khoshnam M; Neva JL; Menon C
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():121-126. PubMed ID: 31374617
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitigating Trunk Compensatory Movements in Post-Stroke Survivors through Visual Feedback during Robotic-Assisted Arm Reaching Exercises.
    Lee SH; Song WK
    Sensors (Basel); 2024 May; 24(11):. PubMed ID: 38894119
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ergonomic assessment of the first assistant during robot-assisted surgery.
    Van't Hullenaar CDP; Bos P; Broeders IAMJ
    J Robot Surg; 2019 Apr; 13(2):283-288. PubMed ID: 30043126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modifying upper-limb inter-joint coordination in healthy subjects by training with a robotic exoskeleton.
    Proietti T; Guigon E; Roby-Brami A; Jarrassé N
    J Neuroeng Rehabil; 2017 Jun; 14(1):55. PubMed ID: 28606179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electroencephalographic markers of robot-aided therapy in stroke patients for the evaluation of upper limb rehabilitation.
    Sale P; Infarinato F; Del Percio C; Lizio R; Babiloni C; Foti C; Franceschini M
    Int J Rehabil Res; 2015 Dec; 38(4):294-305. PubMed ID: 26317486
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of visual and vibrotactile feedback methods for seated posture guidance.
    Zheng YJ; Morrell JB
    IEEE Trans Haptics; 2013; 6(1):13-23. PubMed ID: 24808264
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Association of Vibrotactile Biofeedback With Reduced Ergonomic Risk for Surgeons During Tonsillectomy.
    Kelly NA; Althubaiti A; Katapadi AD; Smith AG; Nyirjesy SC; Yu JH; Onwuka AJ; Chiang T
    JAMA Otolaryngol Head Neck Surg; 2023 May; 149(5):397-403. PubMed ID: 36995687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptive hybrid robotic system for rehabilitation of reaching movement after a brain injury: a usability study.
    Resquín F; Gonzalez-Vargas J; Ibáñez J; Brunetti F; Dimbwadyo I; Carrasco L; Alves S; Gonzalez-Alted C; Gomez-Blanco A; Pons JL
    J Neuroeng Rehabil; 2017 Oct; 14(1):104. PubMed ID: 29025427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A review of technological and clinical aspects of robot-aided rehabilitation of upper-extremity after stroke.
    Babaiasl M; Mahdioun SH; Jaryani P; Yazdani M
    Disabil Rehabil Assist Technol; 2016; 11(4):263-80. PubMed ID: 25600057
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactive wearable systems for upper body rehabilitation: a systematic review.
    Wang Q; Markopoulos P; Yu B; Chen W; Timmermans A
    J Neuroeng Rehabil; 2017 Mar; 14(1):20. PubMed ID: 28284228
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional computer-aided human factors engineering analysis of a grafting robot.
    Chiu YC; Chen S; Wu GJ; Lin YH
    J Agric Saf Health; 2012 Jul; 18(3):181-94. PubMed ID: 22900432
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effectiveness of Visual Feedback in Reducing Trunk Compensation During Arm Reaching for Home-Based Stroke Rehabilitation.
    Lee SH; Song WK
    IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941193
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reducing postural load in order picking through a smart workwear system using real-time vibrotactile feedback.
    Lind CM; Yang L; Abtahi F; Hanson L; Lindecrantz K; Lu K; Forsman M; Eklund J
    Appl Ergon; 2020 Nov; 89():103188. PubMed ID: 32854822
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonlinear disturbance observer based sliding mode control of a cable-driven rehabilitation robot.
    Niu J; Yang Q; Chen G; Song R
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():664-669. PubMed ID: 28813896
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EMU: A transparent 3D robotic manipulandum for upper-limb rehabilitation.
    Fong J; Crocher V; Tan Y; Oetomo D; Mareels I
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():771-776. PubMed ID: 28813913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of reaching movements of upper arm in robot assisted exercises. Kinematic assessment of robot assisted upper arm reaching single-joint movements.
    Iuppariello L; D'Addio G; Romano M; Bifulco P; Lanzillo B; Pappone N; Cesarelli M
    G Ital Med Lav Ergon; 2016; 38(2):116-27. PubMed ID: 27459844
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Control Architecture for Grasp Strength Regulation in Myocontrolled Robotic Hands Using Vibrotactile Feedback: Preliminary Results.
    Meattini R; Biagiotti L; Palli G; De Gregorio D; Melchiorri C
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():1272-1277. PubMed ID: 31374804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Directional Vibrotactile Feedback Interface for Ergonomic Postural Adjustment.
    Kim W; Ruiz Garate V; Gandarias JM; Lorenzini M; Ajoudani A
    IEEE Trans Haptics; 2022; 15(1):200-211. PubMed ID: 34529575
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A robot-based interception task to quantify upper limb impairments in proprioceptive and visual feedback after stroke.
    Park K; Ritsma BR; Dukelow SP; Scott SH
    J Neuroeng Rehabil; 2023 Oct; 20(1):137. PubMed ID: 37821970
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.