These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 31542577)

  • 1. Biodegradation of the endocrine disrupter 4-t-octylphenol by the non-ligninolytic fungus Fusarium falciforme RRK20: Process optimization, estrogenicity assessment, metabolite identification and proposed pathways.
    Rajendran RK; Lee YW; Chou PH; Huang SL; Kirschner R; Lin CC
    Chemosphere; 2020 Feb; 240():124876. PubMed ID: 31542577
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enrichment, isolation, and biodegradation potential of long-branched chain alkylphenol degrading non-ligninolytic fungi from wastewater.
    Rajendran RK; Lin CC; Huang SL; Kirschner R
    Mar Pollut Bull; 2017 Dec; 125(1-2):416-425. PubMed ID: 28964501
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Degradation and toxicity reduction of the endocrine disruptors nonylphenol, 4-tert-octylphenol and 4-cumylphenol by the non-ligninolytic fungus Umbelopsis isabellina.
    Janicki T; Krupiński M; Długoński J
    Bioresour Technol; 2016 Jan; 200():223-9. PubMed ID: 26492175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biodegradation of the endocrine disrupter 4-tert-octylphenol by the yeast strain Candida rugopelliculosa RRKY5 via phenolic ring hydroxylation and alkyl chain oxidation pathways.
    Rajendran RK; Huang SL; Lin CC; Kirschner R
    Bioresour Technol; 2017 Feb; 226():55-64. PubMed ID: 27987401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation and characterization of
    Yan B; Luo L; Yang H
    Environ Technol; 2020 Dec; 41(28):3722-3731. PubMed ID: 31120337
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal of estrogenic activity of 4-tert-octylphenol by ligninolytic enzymes from white rot fungi.
    Tamagawa Y; Hirai H; Kawai S; Nishida T
    Environ Toxicol; 2007 Jun; 22(3):281-6. PubMed ID: 17497634
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biodegradation of endocrine-disrupting compounds and suppression of estrogenic activity by ligninolytic fungi.
    Cajthaml T; Kresinová Z; Svobodová K; Möder M
    Chemosphere; 2009 May; 75(6):745-50. PubMed ID: 19243809
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biodegradation of 4-n-nonylphenol by the non-ligninolytic filamentous fungus Gliocephalotrichum simplex: a proposal of a metabolic pathway.
    Rózalska S; Szewczyk R; Długoński J
    J Hazard Mater; 2010 Aug; 180(1-3):323-31. PubMed ID: 20447765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of opdA, a gene involved in biodegradation of the endocrine disrupter octylphenol.
    Porter AW; Hay AG
    Appl Environ Microbiol; 2007 Nov; 73(22):7373-9. PubMed ID: 17890335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbial degradation of nonylphenol and other alkylphenols--our evolving view.
    Corvini PF; Schäffer A; Schlosser D
    Appl Microbiol Biotechnol; 2006 Sep; 72(2):223-43. PubMed ID: 16826376
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biodegradation of endocrine-disrupting compounds by ligninolytic fungi: mechanisms involved in the degradation.
    Cajthaml T
    Environ Microbiol; 2015 Dec; 17(12):4822-34. PubMed ID: 24650234
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detoxification and simultaneous removal of phenolic xenobiotics and heavy metals with endocrine-disrupting activity by the non-ligninolytic fungus Umbelopsis isabellina.
    Janicki T; Długoński J; Krupiński M
    J Hazard Mater; 2018 Oct; 360():661-669. PubMed ID: 30219529
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biodecontamination of water from bisphenol A using ligninolytic fungi and the modulation role of humic acids.
    Loffredo E; Traversa A; Senesi N
    Ecotoxicol Environ Saf; 2012 May; 79():288-293. PubMed ID: 22305120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photocatalytic degradation of 4-tert-octylphenol in a spiral photoreactor system.
    Wu Y; Yuan H; Jiang X; Wei G; Li C; Dong W
    J Environ Sci (China); 2012; 24(9):1679-85. PubMed ID: 23520877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degradation of alkylphenols by white rot fungus Irpex lacteus and its manganese peroxidase.
    Moon DS; Song HG
    Appl Biochem Biotechnol; 2012 Oct; 168(3):542-9. PubMed ID: 22790662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biodegradation and toxicity reduction of nonylphenol, 4-tert-octylphenol and 2,4-dichlorophenol by the ascomycetous fungus Thielavia sp HJ22: Identification of fungal metabolites and proposal of a putative pathway.
    Mtibaà R; Ezzanad A; Aranda E; Pozo C; Ghariani B; Moraga J; Nasri M; Manuel Cantoral J; Garrido C; Mechichi T
    Sci Total Environ; 2020 Mar; 708():135129. PubMed ID: 31806325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bisphenol A in the environment and recent advances in biodegradation by fungi.
    Torres-García JL; Ahuactzin-Pérez M; Fernández FJ; Cortés-Espinosa DV
    Chemosphere; 2022 Sep; 303(Pt 1):134940. PubMed ID: 35588877
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methane biodegradation and enhanced methane solubilization by the filamentous fungi Fusarium solani.
    Vergara-Fernández A; Morales P; Scott F; Guerrero S; Yañez L; Mau S; Aroca G
    Chemosphere; 2019 Jul; 226():24-35. PubMed ID: 30913425
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study of 4-t-octylphenol degradation and microbial community in granular sludge.
    Liu Y; Wang F; Xia S; Zhao J
    J Environ Sci (China); 2008; 20(2):167-71. PubMed ID: 18574956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of novel metabolites of the xenoestrogen 4-tert-octylphenol in primary rat hepatocytes.
    Pedersen RT; Hill EM
    Chem Biol Interact; 2000 Nov; 128(3):189-209. PubMed ID: 11064003
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.