These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 31542599)
1. Epifaunal and infaunal responses to submarine mine tailings in a Norwegian fjord. Trannum HC; Borgersen G; Oug E; Glette T; Brooks L; Ramirez-Llodra E Mar Pollut Bull; 2019 Dec; 149():110560. PubMed ID: 31542599 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of mine tailings effects on a benthic marine infaunal community over 29 years. Burd BJ Mar Environ Res; 2002 Jun; 53(5):481-519. PubMed ID: 12054107 [TBL] [Abstract][Full Text] [Related]
3. Biological effects of long term fine limestone tailings discharge in a fjord ecosystem. Brooks L; Melsom F; Glette T Mar Pollut Bull; 2015 Jul; 96(1-2):321-36. PubMed ID: 25960275 [TBL] [Abstract][Full Text] [Related]
4. Long-term dispersion and availability of metals from submarine mine tailing disposal in a fjord in Arctic Norway. Pedersen KB; Jensen PE; Sternal B; Ottosen LM; Henning MV; Kudahl MM; Junttila J; Skirbekk K; Frantzen M Environ Sci Pollut Res Int; 2018 Nov; 25(33):32901-32912. PubMed ID: 28550634 [TBL] [Abstract][Full Text] [Related]
5. The impact of submarine copper mine tailing disposal from the 1970s on Repparfjorden, northern Norway. Sternal B; Junttila J; Skirbekk K; Forwick M; Carroll J; Pedersen KB Mar Pollut Bull; 2017 Jul; 120(1-2):136-153. PubMed ID: 28502452 [TBL] [Abstract][Full Text] [Related]
6. Multi-isotopic composition of brown crab (Cancer pagurus) and seafloor sediment from a mine tailing sea disposal impacted fjord ecosystem. Bank MS; Ho QT; Kutti T; Kögel T; Rodushkin I; van der Meeren T; Wiech M; Rastrick S J Hazard Mater; 2024 Jun; 471():134406. PubMed ID: 38688218 [TBL] [Abstract][Full Text] [Related]
7. Punctuated recovery of sediments and benthic infauna: a 19-year study of tailings deposition in a British Columbia fjord. Burd B; Macdonald R; Boyd J Mar Environ Res; 2000 Mar; 49(2):145-75. PubMed ID: 11443996 [TBL] [Abstract][Full Text] [Related]
8. Benthic community status and mobilization of Ni, Cu and Co at abandoned sea deposits for mine tailings in SW Norway. Schaanning MT; Trannum HC; Øxnevad S; Ndungu K Mar Pollut Bull; 2019 Apr; 141():318-331. PubMed ID: 30955740 [TBL] [Abstract][Full Text] [Related]
9. Ecological impacts of large-scale disposal of mining waste in the deep sea. Hughes DJ; Shimmield TM; Black KD; Howe JA Sci Rep; 2015 May; 5():9985. PubMed ID: 25939397 [TBL] [Abstract][Full Text] [Related]
10. Threshold response of benthic macrofauna integrity to metal contamination in West Greenland. Josefson AB; Hansen JL; Asmund G; Johansen P Mar Pollut Bull; 2008 Jul; 56(7):1265-74. PubMed ID: 18513757 [TBL] [Abstract][Full Text] [Related]
11. Long-term response of an arctic fiord system to lead-zinc mining and submarine disposal of mine waste (Maarmorilik, West Greenland). Søndergaard J; Asmund G; Johansen P; Rigét F Mar Environ Res; 2011 Jun; 71(5):331-41. PubMed ID: 21492930 [TBL] [Abstract][Full Text] [Related]
12. Environmental adaptive management: Application on submarine mine tailings disposal. Jensen T; Hylland K Integr Environ Assess Manag; 2019 Jul; 15(4):575-583. PubMed ID: 30790447 [TBL] [Abstract][Full Text] [Related]
13. Environmental hazard assessment of a marine mine tailings deposit site and potential implications for deep-sea mining. Mestre NC; Rocha TL; Canals M; Cardoso C; Danovaro R; Dell'Anno A; Gambi C; Regoli F; Sanchez-Vidal A; Bebianno MJ Environ Pollut; 2017 Sep; 228():169-178. PubMed ID: 28531798 [TBL] [Abstract][Full Text] [Related]
14. Characterisation of fine-grained tailings from a marble processing plant and their acute effects on the copepod Calanus finmarchicus. Farkas J; Altin D; Hammer KM; Hellstrøm KC; Booth AM; Hansen BH Chemosphere; 2017 Feb; 169():700-708. PubMed ID: 27914355 [TBL] [Abstract][Full Text] [Related]
15. An ecotoxicological assessment of mine tailings from three Norwegian mines. Brooks SJ; Escudero-Oñate C; Lillicrap AD Chemosphere; 2019 Oct; 233():818-827. PubMed ID: 31200140 [TBL] [Abstract][Full Text] [Related]
16. Macrofaunal colonization of mine tailings impacted sediments. Trannum HC; Næss R; Gundersen H Sci Total Environ; 2020 Mar; 708():134866. PubMed ID: 31785908 [TBL] [Abstract][Full Text] [Related]
17. Lability of toxic elements in Submarine Tailings Disposal: The relationship between metal fractionation and metal uptake by sandworms (Alitta virens). Simonsen AMT; Pedersen KB; Jensen PE; Elberling B; Bach L Sci Total Environ; 2019 Dec; 696():133903. PubMed ID: 31454604 [TBL] [Abstract][Full Text] [Related]
18. What does impacted look like? High diversity and abundance of epibiota in modified estuaries. Clark GF; Kelaher BP; Dafforn KA; Coleman MA; Knott NA; Marzinelli EM; Johnston EL Environ Pollut; 2015 Jan; 196():12-20. PubMed ID: 25282127 [TBL] [Abstract][Full Text] [Related]
19. Colonization of mine tailings by marine invertebrates. Kline ER; Stekoll MS Mar Environ Res; 2001 May; 51(4):301-25. PubMed ID: 11495492 [TBL] [Abstract][Full Text] [Related]
20. The influence of Magnafloc10 on the acidic, alkaline, and electrodialytic desorption of metals from mine tailings. Pedersen KB; Reinardy HC; Jensen PE; Ottosen LM; Junttila J; Frantzen M J Environ Manage; 2018 Oct; 224():130-139. PubMed ID: 30036807 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]