These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 31542675)

  • 1. Fractal properties and short-term correlations in motor control in cycling: influence of a cognitive challenge.
    Gilfriche P; Arsac LM; Blons E; Deschodt-Arsac V
    Hum Mov Sci; 2019 Oct; 67():102518. PubMed ID: 31542675
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved cognition while cycling in Parkinson's disease patients and healthy adults.
    Hazamy AA; Altmann LJP; Stegemöller E; Bowers D; Lee HK; Wilson J; Okun MS; Hass CJ
    Brain Cogn; 2017 Apr; 113():23-31. PubMed ID: 28088064
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unexpected dual task benefits on cycling in Parkinson disease and healthy adults: a neuro-behavioral model.
    Altmann LJ; Stegemöller E; Hazamy AA; Wilson JP; Okun MS; McFarland NR; Wagle Shukla A; Hass CJ
    PLoS One; 2015; 10(5):e0125470. PubMed ID: 25970607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics of revolution time variability in cycling pattern: voluntary intent can alter the long-range autocorrelations.
    Warlop TB; Bollens B; Crevecoeur F; Detrembleur C; Lejeune TM
    Ann Biomed Eng; 2013 Aug; 41(8):1604-12. PubMed ID: 23712680
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Association between stride time fractality and gait adaptability during unperturbed and asymmetric walking.
    Ducharme SW; Liddy JJ; Haddad JM; Busa MA; Claxton LJ; van Emmerik REA
    Hum Mov Sci; 2018 Apr; 58():248-259. PubMed ID: 29505917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Does central fatigue explain reduced cycling after complete sleep deprivation?
    Temesi J; Arnal PJ; Davranche K; Bonnefoy R; Levy P; Verges S; Millet GY
    Med Sci Sports Exerc; 2013 Dec; 45(12):2243-53. PubMed ID: 23760468
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discriminating brain activity from task-related artifacts in functional MRI: fractal scaling analysis simulation and application.
    Lee JM; Hu J; Gao J; Crosson B; Peck KK; Wierenga CE; McGregor K; Zhao Q; White KD
    Neuroimage; 2008 Mar; 40(1):197-212. PubMed ID: 18178485
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fractal complexity of daily physical activity and cognitive function in a midlife cohort.
    Blodgett JM; Ahmadi M; Stamatakis E; Rockwood K; Hamer M
    Sci Rep; 2023 Nov; 13(1):20340. PubMed ID: 37990028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental control of scaling behavior: what is not fractal?
    Likens AD; Fine JM; Amazeen EL; Amazeen PG
    Exp Brain Res; 2015 Oct; 233(10):2813-21. PubMed ID: 26070902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validation of a multidirectional locomotive dual-task paradigm to evaluate task-related differences in event-related electro-cortical activity.
    Duncan SJ; Gosling A; Panchuk D; Polman RCJ
    Behav Brain Res; 2019 Apr; 361():122-130. PubMed ID: 30583028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of series length on statistical precision and sensitivity of autocorrelation assessment in human locomotion.
    Warlop TB; Bollens B; Detrembleur C; Stoquart G; Lejeune T; Crevecoeur F
    Hum Mov Sci; 2017 Oct; 55():31-42. PubMed ID: 28750259
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fractal models for event-based and dynamical timers.
    Delignières D; Torre K; Lemoine L
    Acta Psychol (Amst); 2008 Feb; 127(2):382-97. PubMed ID: 17854754
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Circadian Rhythms in Fractal Features of EEG Signals.
    Croce P; Quercia A; Costa S; Zappasodi F
    Front Physiol; 2018; 9():1567. PubMed ID: 30483146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fractal dynamics in dexterous tool use: the case of hammering behavior of bead craftsmen.
    Nonaka T; Bril B
    J Exp Psychol Hum Percept Perform; 2014 Feb; 40(1):218-31. PubMed ID: 23875576
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Age-related alterations in the fractal scaling of cardiac interbeat interval dynamics.
    Iyengar N; Peng CK; Morin R; Goldberger AL; Lipsitz LA
    Am J Physiol; 1996 Oct; 271(4 Pt 2):R1078-84. PubMed ID: 8898003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Segregation and Integration of Distinct Brain Networks and Their Relationship to Cognition.
    Cohen JR; D'Esposito M
    J Neurosci; 2016 Nov; 36(48):12083-12094. PubMed ID: 27903719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Attentional demands of perturbation evoked compensatory stepping responses: examining cognitive-motor interference to large magnitude forward perturbations.
    Patel PJ; Bhatt T
    J Mot Behav; 2015; 47(3):201-10. PubMed ID: 25559427
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction between intention and environmental constraints on the fractal dynamics of human performance.
    Washburn A; Coey CA; Romero V; Malone M; Richardson MJ
    Cogn Process; 2015 Nov; 16(4):343-50. PubMed ID: 25900114
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Motor-cognitive dual-task performance: effects of a concurrent motor task on distinct components of visual processing capacity.
    Künstler ECS; Finke K; Günther A; Klingner C; Witte O; Bublak P
    Psychol Res; 2018 Jan; 82(1):177-185. PubMed ID: 29196834
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cognitive performance under motor demands - On the influence of task difficulty and postural control.
    Liebherr M; Weiland-Breckle H; Grewe T; Schumacher PB
    Brain Res; 2018 Apr; 1684():1-8. PubMed ID: 29409797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.