These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 31542708)

  • 1. Kinetic flux vector splitting scheme for solving non-reactive multi-component flows.
    Saqib M; Rabbani A; Nisar UA; Ashraf W; Qamar S
    Comput Biol Chem; 2019 Dec; 83():107107. PubMed ID: 31542708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A kinetic flux vector splitting scheme for shallow water equations incorporating variable bottom topography and horizontal temperature gradients.
    Saleem MR; Ashraf W; Zia S; Ali I; Qamar S
    PLoS One; 2018; 13(5):e0197500. PubMed ID: 29851978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of Central Upwind Scheme for Solving Special Relativistic Hydrodynamic Equations.
    Yousaf M; Ghaffar T; Qamar S
    PLoS One; 2015; 10(6):e0128698. PubMed ID: 26070067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Central upwind scheme for a compressible two-phase flow model.
    Ahmed M; Saleem MR; Zia S; Qamar S
    PLoS One; 2015; 10(6):e0126273. PubMed ID: 26039242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-order kinetic flow solver based on the flux reconstruction framework.
    Li J; Zhong C; Liu S
    Phys Rev E; 2020 Oct; 102(4-1):043306. PubMed ID: 33212690
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiscale kinetic inviscid flux extracted from a gas-kinetic scheme for simulating incompressible and compressible flows.
    Liu S; Cao J; Zhong C
    Phys Rev E; 2020 Sep; 102(3-1):033310. PubMed ID: 33075992
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Third-order discrete unified gas kinetic scheme for continuum and rarefied flows: Low-speed isothermal case.
    Wu C; Shi B; Shu C; Chen Z
    Phys Rev E; 2018 Feb; 97(2-1):023306. PubMed ID: 29548207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discrete unified gas kinetic scheme for all Knudsen number flows. II. Thermal compressible case.
    Guo Z; Wang R; Xu K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):033313. PubMed ID: 25871252
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An almost symmetric Strang splitting scheme for the construction of high order composition methods.
    Einkemmer L; Ostermann A
    J Comput Appl Math; 2014 Dec; 271(100):307-318. PubMed ID: 25473146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of an efficient gas kinetic scheme for simulation of two-dimensional incompressible thermal flows.
    Yang LM; Shu C; Yang WM; Wu J
    Phys Rev E; 2018 Jan; 97(1-1):013305. PubMed ID: 29448389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-order weighted essentially nonoscillatory finite-difference formulation of the lattice Boltzmann method in generalized curvilinear coordinates.
    Hejranfar K; Saadat MH; Taheri S
    Phys Rev E; 2017 Feb; 95(2-1):023314. PubMed ID: 28297984
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A numerical efficient splitting method for the solution of two dimensional susceptible infected recovered epidemic model of whooping cough dynamics: Applications in bio-medical engineering.
    Ahmed N; Ali M; Rafiq M; Khan I; Nisar KS; Rehman MA; Ahmad MO
    Comput Methods Programs Biomed; 2020 Jul; 190():105350. PubMed ID: 32078958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulation of two-phase liquid-vapor flows using a high-order compact finite-difference lattice Boltzmann method.
    Hejranfar K; Ezzatneshan E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):053305. PubMed ID: 26651814
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An almost symmetric Strang splitting scheme for nonlinear evolution equations.
    Einkemmer L; Ostermann A
    Comput Math Appl; 2014 Jul; 67(12):2144-2157. PubMed ID: 25844017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finite-volume WENO scheme for viscous compressible multicomponent flows.
    Coralic V; Colonius T
    J Comput Phys; 2014 Oct; 274():95-121. PubMed ID: 25110358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unified preserving properties of kinetic schemes.
    Guo Z; Li J; Xu K
    Phys Rev E; 2023 Feb; 107(2-2):025301. PubMed ID: 36932543
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simplification of the unified gas kinetic scheme.
    Chen S; Guo Z; Xu K
    Phys Rev E; 2016 Aug; 94(2-1):023313. PubMed ID: 27627418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the approximation of dam-break problems using a fuzzified HR-TVD scheme.
    Lochab R; Kumar V
    MethodsX; 2023; 10():102003. PubMed ID: 36684471
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of explicit formulations of G45-based gas kinetic scheme for simulation of continuum and rarefied flows.
    Liu ZJ; Shu C; Chen SY; Liu W; Yuan ZY; Yang LM
    Phys Rev E; 2022 Apr; 105(4-2):045302. PubMed ID: 35590639
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discrete unified gas kinetic scheme for electrostatic plasma and its comparison with the particle-in-cell method.
    Liu H; Quan L; Chen Q; Zhou S; Cao Y
    Phys Rev E; 2020 Apr; 101(4-1):043307. PubMed ID: 32422848
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.