BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

498 related articles for article (PubMed ID: 31543709)

  • 1. Primary Cilium, An Unsung Hero in Maintaining Functional β-cell Population.
    Lodh S
    Yale J Biol Med; 2019 Sep; 92(3):471-480. PubMed ID: 31543709
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A truncating mutation of Alms1 reduces the number of hypothalamic neuronal cilia in obese mice.
    Heydet D; Chen LX; Larter CZ; Inglis C; Silverman MA; Farrell GC; Leroux MR
    Dev Neurobiol; 2013 Jan; 73(1):1-13. PubMed ID: 22581473
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bardet-Biedl syndrome: Is it only cilia dysfunction?
    Novas R; Cardenas-Rodriguez M; Irigoín F; Badano JL
    FEBS Lett; 2015 Nov; 589(22):3479-91. PubMed ID: 26231314
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alström syndrome: insights into the pathogenesis of metabolic disorders.
    Girard D; Petrovsky N
    Nat Rev Endocrinol; 2011 Feb; 7(2):77-88. PubMed ID: 21135875
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteomic and Transcriptomic Landscapes of Alström and Bardet-Biedl Syndromes.
    Smyczynska U; Stanczak M; Kuljanin M; Włodarczyk A; Stoczynska-Fidelus E; Taha J; Pawlik B; Borowiec M; Mancias JD; Mlynarski W; Rieske P; Fendler W; Zmysłowska A
    Genes (Basel); 2022 Dec; 13(12):. PubMed ID: 36553637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A role for Alström syndrome protein, alms1, in kidney ciliogenesis and cellular quiescence.
    Li G; Vega R; Nelms K; Gekakis N; Goodnow C; McNamara P; Wu H; Hong NA; Glynne R
    PLoS Genet; 2007 Jan; 3(1):e8. PubMed ID: 17206865
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Retinal ciliopathies through the lens of Bardet-Biedl Syndrome: Past, present and future.
    Chandra B; Tung ML; Hsu Y; Scheetz T; Sheffield VC
    Prog Retin Eye Res; 2022 Jul; 89():101035. PubMed ID: 34929400
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The cilium: a cellular antenna with an influence on obesity risk.
    Mariman EC; Vink RG; Roumans NJ; Bouwman FG; Stumpel CT; Aller EE; van Baak MA; Wang P
    Br J Nutr; 2016 Aug; 116(4):576-92. PubMed ID: 27323230
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exocrine pancreas proteases regulate β-cell proliferation in zebrafish ciliopathy models and in murine systems.
    Hostelley TL; Nesmith JE; Larkin E; Jones A; Boyes D; Leitch CC; Fontaine M; Zaghloul NA
    Biol Open; 2021 Jun; 10(6):. PubMed ID: 34125181
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential effects on β-cell mass by disruption of Bardet-Biedl syndrome or Alstrom syndrome genes.
    Lodh S; Hostelley TL; Leitch CC; O'Hare EA; Zaghloul NA
    Hum Mol Genet; 2016 Jan; 25(1):57-68. PubMed ID: 26494903
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Utilization of conditional alleles to study the role of the primary cilium in obesity.
    Kesterson RA; Berbari NF; Pasek RC; Yoder BK
    Methods Cell Biol; 2009; 94():163-79. PubMed ID: 20362090
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Whole organism transcriptome analysis of zebrafish models of Bardet-Biedl Syndrome and Alström Syndrome provides mechanistic insight into shared and divergent phenotypes.
    Hostelley TL; Lodh S; Zaghloul NA
    BMC Genomics; 2016 May; 17():318. PubMed ID: 27142762
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Primary cilia in energy balance signaling and metabolic disorder.
    Lee H; Song J; Jung JH; Ko HW
    BMB Rep; 2015 Dec; 48(12):647-54. PubMed ID: 26538252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of cilia in normal pancreas function and in diseased states.
    diIorio P; Rittenhouse AR; Bortell R; Jurczyk A
    Birth Defects Res C Embryo Today; 2014 Jun; 102(2):126-38. PubMed ID: 24861006
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Whole-Organism Developmental Expression Profiling Identifies RAB-28 as a Novel Ciliary GTPase Associated with the BBSome and Intraflagellar Transport.
    Jensen VL; Carter S; Sanders AA; Li C; Kennedy J; Timbers TA; Cai J; Scheidel N; Kennedy BN; Morin RD; Leroux MR; Blacque OE
    PLoS Genet; 2016 Dec; 12(12):e1006469. PubMed ID: 27930654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tissue-dependent differences in Bardet-Biedl syndrome gene expression.
    Patnaik SR; Farag A; Brücker L; Volz AK; Schneider S; Kretschmer V; May-Simera HL
    Biol Cell; 2020 Feb; 112(2):39-52. PubMed ID: 31845361
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Disruption of Dopamine Receptor 1 Localization to Primary Cilia Impairs Signaling in Striatal Neurons.
    Stubbs T; Koemeter-Cox A; Bingman JI; Zhao F; Kalyanasundaram A; Rowland LA; Periasamy M; Carter CS; Sheffield VC; Askwith CC; Mykytyn K
    J Neurosci; 2022 Aug; 42(35):6692-6705. PubMed ID: 35882560
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Retinal dystrophy in Bardet-Biedl syndrome and related syndromic ciliopathies.
    Mockel A; Perdomo Y; Stutzmann F; Letsch J; Marion V; Dollfus H
    Prog Retin Eye Res; 2011 Jul; 30(4):258-74. PubMed ID: 21477661
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Primary Cilia in Pancreatic β- and α-Cells: Time to Revisit the Role of Insulin-Degrading Enzyme.
    Pablos M; Casanueva-Álvarez E; González-Casimiro CM; Merino B; Perdomo G; Cózar-Castellano I
    Front Endocrinol (Lausanne); 2022; 13():922825. PubMed ID: 35832432
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of bone metabolism disorders in patients with Alström and Bardet-Biedl syndromes based on markers of bone turnover and mandibular atrophy.
    Jeziorny K; Zmyslowska-Polakowska E; Wyka K; Pyziak-Skupień A; Borowiec M; Szadkowska A; Zmysłowska A
    Bone Rep; 2022 Dec; 17():101600. PubMed ID: 35818441
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.