These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 31543880)

  • 1. Magnetic Nanoparticles Attached to the NK Cell Surface for Tumor Targeting in Adoptive Transfer Therapies Does Not Affect Cellular Effector Functions.
    Sanz-Ortega L; Rojas JM; Portilla Y; Pérez-Yagüe S; Barber DF
    Front Immunol; 2019; 10():2073. PubMed ID: 31543880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetic targeting of adoptively transferred tumour-specific nanoparticle-loaded CD8
    Sanz-Ortega L; Portilla Y; Pérez-Yagüe S; Barber DF
    J Nanobiotechnology; 2019 Aug; 17(1):87. PubMed ID: 31387604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. T cells loaded with magnetic nanoparticles are retained in peripheral lymph nodes by the application of a magnetic field.
    Sanz-Ortega L; Rojas JM; Marcos A; Portilla Y; Stein JV; Barber DF
    J Nanobiotechnology; 2019 Jan; 17(1):14. PubMed ID: 30670029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ex Vivo Expanded Human NK Cells Survive and Proliferate in Humanized Mice with Autologous Human Immune Cells.
    Vahedi F; Nham T; Poznanski SM; Chew MV; Shenouda MM; Lee D; Ashkar AA
    Sci Rep; 2017 Sep; 7(1):12083. PubMed ID: 28935883
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pharmacologically upregulated carcinoembryonic antigen-expression enhances the cytolytic activity of genetically-modified chimeric antigen receptor NK-92MI against colorectal cancer cells.
    Shiozawa M; Chang CH; Huang YC; Chen YC; Chi MS; Hao HC; Chang YC; Takeda S; Chi KH; Wang YS
    BMC Immunol; 2018 Aug; 19(1):27. PubMed ID: 30075754
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Uncoupling of Canonical Phenotypic Markers and Functional Potency of
    Lieberman NAP; DeGolier K; Haberthur K; Chinn H; Moyes KW; Bouchlaka MN; Walker KL; Capitini CM; Crane CA
    Front Immunol; 2018; 9():150. PubMed ID: 29456538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of genetically altered, interleukin 2-independent natural killer cell lines suitable for adoptive cellular immunotherapy.
    Tam YK; Maki G; Miyagawa B; Hennemann B; Tonn T; Klingemann HG
    Hum Gene Ther; 1999 May; 10(8):1359-73. PubMed ID: 10365666
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetic delivery of Fe
    Wu L; Zhang F; Wei Z; Li X; Zhao H; Lv H; Ge R; Ma H; Zhang H; Yang B; Li J; Jiang J
    Biomater Sci; 2018 Sep; 6(10):2714-2725. PubMed ID: 30151523
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetically re-engineered K562 cells significantly expand and functionally activate cord blood natural killer cells: Potential for adoptive cellular immunotherapy.
    Ayello J; Hochberg J; Flower A; Chu Y; Baxi LV; Quish W; van de Ven C; Cairo MS
    Exp Hematol; 2017 Feb; 46():38-47. PubMed ID: 27765614
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Natural Killer Cell Adoptive Transfer Therapy: Exploiting the First Line of Defense Against Cancer.
    Davis ZB; Felices M; Verneris MR; Miller JS
    Cancer J; 2015; 21(6):486-91. PubMed ID: 26588681
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Natural killer cell-based adoptive immunotherapy eradicates and drives differentiation of chemoresistant bladder cancer stem-like cells.
    Ferreira-Teixeira M; Paiva-Oliveira D; Parada B; Alves V; Sousa V; Chijioke O; Münz C; Reis F; Rodrigues-Santos P; Gomes C
    BMC Med; 2016 Oct; 14(1):163. PubMed ID: 27769244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adoptive transfer of osteoclast-expanded natural killer cells for immunotherapy targeting cancer stem-like cells in humanized mice.
    Kozlowska AK; Kaur K; Topchyan P; Jewett A
    Cancer Immunol Immunother; 2016 Jul; 65(7):835-45. PubMed ID: 27034236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Therapeutic potential of highly cytotoxic natural killer cells for gastric cancer.
    Mimura K; Kamiya T; Shiraishi K; Kua LF; Shabbir A; So J; Yong WP; Suzuki Y; Yoshimoto Y; Nakano T; Fujii H; Campana D; Kono K
    Int J Cancer; 2014 Sep; 135(6):1390-8. PubMed ID: 24615495
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Viral and Nonviral Engineering of Natural Killer Cells as Emerging Adoptive Cancer Immunotherapies.
    Matosevic S
    J Immunol Res; 2018; 2018():4054815. PubMed ID: 30306093
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Endogenous and adoptively transferred A-NK and T-LAK cells continuously accumulate within murine metastases up to 48 h after inoculation.
    Hokland M; Kjaergaard J; Kuppen PJ; Nannmark U; Agger R; Hokland P; Basse P
    In Vivo; 1999; 13(3):199-204. PubMed ID: 10459491
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell membrane-encapsulated magnetic nanoparticles for enhancing natural killer cell-mediated cancer immunotherapy.
    Wu D; Shou X; Zhang Y; Li Z; Wu G; Wu D; Wu J; Shi S; Wang S
    Nanomedicine; 2021 Feb; 32():102333. PubMed ID: 33188908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immune responsiveness in a mouse model of combined adoptive immunotherapy with NK and dendritic cells.
    Cui F; Ji J; Lv H; Qu D; Yu C; Yang Y; Xu Y
    J Cancer Res Ther; 2013 Nov; 9 Suppl():S162-8. PubMed ID: 24516054
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeting of CXCR3 improves anti-myeloma efficacy of adoptively transferred activated natural killer cells.
    Bonanni V; Antonangeli F; Santoni A; Bernardini G
    J Immunother Cancer; 2019 Nov; 7(1):290. PubMed ID: 31699153
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In Vivo (19)F-Magnetic Resonance Imaging of Adoptively Transferred NK Cells.
    Somanchi SS; Kennis BA; Gopalakrishnan V; Lee DA; Bankson JA
    Methods Mol Biol; 2016; 1441():317-32. PubMed ID: 27177678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discovery of a novel natural killer cell line with distinct immunostimulatory and proliferative potential as an alternative platform for cancer immunotherapy.
    Yang HG; Kang MC; Kim TY; Hwang I; Jin HT; Sung YC; Eom KS; Kim SW
    J Immunother Cancer; 2019 May; 7(1):138. PubMed ID: 31126350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.