These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 31544353)
1. Fuel-Driven Transient Crystallization of a Cucurbit[8]uril-Based Host-Guest Complex. Choi S; Mukhopadhyay RD; Kim Y; Hwang IC; Hwang W; Ghosh SK; Baek K; Kim K Angew Chem Int Ed Engl; 2019 Nov; 58(47):16850-16853. PubMed ID: 31544353 [TBL] [Abstract][Full Text] [Related]
2. Transient and Dissipative Host-Guest Hydrogels Regulated by Consumption of a Reactive Chemical Fuel. Su B; Chi T; Ye Z; Xiang Y; Dong P; Liu D; Addonizio CJ; Webber MJ Angew Chem Int Ed Engl; 2023 Mar; 62(11):e202216537. PubMed ID: 36598411 [TBL] [Abstract][Full Text] [Related]
3. Chemical fuel-driven transient 2D supramolecular organic frameworks (SOFs): catalysis for green synthesis. Du H; Zhao M; Lang X; Li X; Zhao H Chem Commun (Camb); 2024 Jul; 60(59):7598-7601. PubMed ID: 38952286 [TBL] [Abstract][Full Text] [Related]
4. Cucurbit[8]uril-Based Polymers and Polymer Materials. Zou H; Liu J; Li Y; Li X; Wang X Small; 2018 Nov; 14(46):e1802234. PubMed ID: 30168673 [TBL] [Abstract][Full Text] [Related]
5. Cucurbit[8]uril-Containing Multilayer Films for the Photocontrolled Binding and Release of a Guest Molecule. Nicolas H; Yuan B; Zhang X; Schönhoff M Langmuir; 2016 Mar; 32(10):2410-8. PubMed ID: 26891704 [TBL] [Abstract][Full Text] [Related]
6. Cucurbit[8]uril (CB[8])-Based Supramolecular Switches. Pazos E; Novo P; Peinador C; Kaifer AE; García MD Angew Chem Int Ed Engl; 2019 Jan; 58(2):403-416. PubMed ID: 29978946 [TBL] [Abstract][Full Text] [Related]
7. Cucurbit[8]uril as nanocontainer in a polyelectrolyte multilayer film: a quantitative and kinetic study of guest uptake. Nicolas H; Yuan B; Zhang J; Zhang X; Schönhoff M Langmuir; 2015 Oct; 31(39):10734-42. PubMed ID: 26372778 [TBL] [Abstract][Full Text] [Related]
8. Emerging Two-Dimensional Crystallization of Cucurbit[8]uril Complexes: From Supramolecular Polymers to Nanofibers. Barrio JD; Liu J; Brady RA; Tan CSY; Chiodini S; Ricci M; Fernández-Leiro R; Tsai CJ; Vasileiadi P; Di Michele L; Lairez D; Toprakcioglu C; Scherman OA J Am Chem Soc; 2019 Sep; 141(36):14021-14025. PubMed ID: 31422657 [TBL] [Abstract][Full Text] [Related]
9. Dissipative Systems Driven by the Decarboxylation of Activated Carboxylic Acids. Del Giudice D; Di Stefano S Acc Chem Res; 2023 Apr; 56(7):889-899. PubMed ID: 36916734 [TBL] [Abstract][Full Text] [Related]
10. Transient Self-assembly Processes Operated by Gaseous Fuels under Out-of-Equilibrium Conditions. Mukhopadhyay RD; Choi S; Sen SK; Hwang IC; Kim K Chem Asian J; 2020 Dec; 15(23):4118-4123. PubMed ID: 33135872 [TBL] [Abstract][Full Text] [Related]
11. Humidity- and Temperature-Tunable Multicolor Luminescence of Cucurbit[8]uril-Based Supramolecular Assembly. Jiang T; Wang X; Wang J; Hu G; Ma X ACS Appl Mater Interfaces; 2019 Apr; 11(15):14399-14407. PubMed ID: 30915832 [TBL] [Abstract][Full Text] [Related]
12. Supramolecular cross-linked networks via host-guest complexation with cucurbit[8]uril. Appel EA; Biedermann F; Rauwald U; Jones ST; Zayed JM; Scherman OA J Am Chem Soc; 2010 Oct; 132(40):14251-60. PubMed ID: 20845973 [TBL] [Abstract][Full Text] [Related]
13. Highly Selective Separation of Minimum-Boiling Azeotrope Toluene/Pyridine by Nonporous Adaptive Crystals of Cucurbit[6]uril. Li Q; Jie K; Huang F Angew Chem Int Ed Engl; 2020 Mar; 59(13):5355-5358. PubMed ID: 31951060 [TBL] [Abstract][Full Text] [Related]
14. Responsive Supramolecular Nanomicelles Formed through Self-Assembly of Acyclic Cucurbit[ Li Y; Liu Q; Ding J; Zou J; Yang B Mol Pharm; 2024 Nov; 21(11):5784-5796. PubMed ID: 39374616 [TBL] [Abstract][Full Text] [Related]
15. Cucurbit[6]uril-cucurbit[7]uril heterodimer promotes controlled self-assembly of supramolecular networks and supramolecular micelles by self-sorting of amphiphilic guests. Zhang M; Cao L; Isaacs L Chem Commun (Camb); 2014 Dec; 50(94):14756-9. PubMed ID: 25318021 [TBL] [Abstract][Full Text] [Related]
16. Probing the stability of multicomponent self-assembled architectures based on cucurbit[8]uril in the gas phase. Cziferszky M; Biedermann F; Kalberer M; Scherman OA Org Biomol Chem; 2012 Mar; 10(12):2447-52. PubMed ID: 22336996 [TBL] [Abstract][Full Text] [Related]
17. Transient cucurbit[7]uril-mediated host-guest complexes for time-dependent fluorescence and information-self-erasing hydrogel. Wang Q; Qi Z; Xu H; Li X; Lei Y; Qu DH Chem Commun (Camb); 2024 Sep; 60(75):10342-10345. PubMed ID: 39212465 [TBL] [Abstract][Full Text] [Related]
18. Stimuli-responsive host-guest systems based on the recognition of cryptands by organic guests. Zhang M; Yan X; Huang F; Niu Z; Gibson HW Acc Chem Res; 2014 Jul; 47(7):1995-2005. PubMed ID: 24804805 [TBL] [Abstract][Full Text] [Related]
20. Cucurbit[10]uril-Based [2]Rotaxane: Preparation and Supramolecular Assembly-Induced Fluorescence Enhancement. Yu Y; Li Y; Wang X; Nian H; Wang L; Li J; Zhao Y; Yang X; Liu S; Cao L J Org Chem; 2017 Jun; 82(11):5590-5596. PubMed ID: 28486799 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]