BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 31544452)

  • 1. Intact Crystalline Semiconducting Graphene Nanoribbons from Unzipping Nitrogen-Doped Carbon Nanotubes.
    Lee HJ; Lim J; Cho SY; Kim H; Lee C; Lee GY; Sasikala SP; Yun T; Choi DS; Jeong MS; Jung HT; Hong S; Kim SO
    ACS Appl Mater Interfaces; 2019 Oct; 11(41):38006-38015. PubMed ID: 31544452
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dopant-specific unzipping of carbon nanotubes for intact crystalline graphene nanostructures.
    Lim J; Maiti UN; Kim NY; Narayan R; Lee WJ; Choi DS; Oh Y; Lee JM; Lee GY; Kang SH; Kim H; Kim YH; Kim SO
    Nat Commun; 2016 Jan; 7():10364. PubMed ID: 26796993
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of nitrogen-doped graphene nanoribbons via chemical unzipping.
    Cruz-Silva R; Morelos-Gómez A; Vega-Díaz S; Tristán-López F; Elias AL; Perea-López N; Muramatsu H; Hayashi T; Fujisawa K; Kim YA; Endo M; Terrones M
    ACS Nano; 2013 Mar; 7(3):2192-204. PubMed ID: 23421313
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Helical and Dendritic Unzipping of Carbon Nanotubes: A Route to Nitrogen-Doped Graphene Nanoribbons.
    Zehtab Yazdi A; Chizari K; Jalilov AS; Tour J; Sundararaj U
    ACS Nano; 2015 Jun; 9(6):5833-45. PubMed ID: 26028162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visualizing Ribbon-to-Ribbon Heterogeneity of Chemically Unzipped Wide Graphene Nanoribbons by Silver Nanowire-Based Tip-Enhanced Raman Scattering Microscopy.
    Inose T; Toyouchi S; Hara S; Sugioka S; Walke P; Oyabu R; Fortuni B; Peeters W; Usami Y; Hirai K; De Feyter S; Uji-I H; Fujita Y; Tanaka H
    Small; 2024 Jan; 20(3):e2301841. PubMed ID: 37649218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Revisiting the Mechanism of Oxidative Unzipping of Multiwall Carbon Nanotubes to Graphene Nanoribbons.
    Dimiev AM; Khannanov A; Vakhitov I; Kiiamov A; Shukhina K; Tour JM
    ACS Nano; 2018 Apr; 12(4):3985-3993. PubMed ID: 29578700
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photoluminescent Semiconducting Graphene Nanoribbons via Longitudinally Unzipping Single-Walled Carbon Nanotubes.
    Li H; Zhang J; Gholizadeh AB; Brownless J; Fu Y; Cai W; Han Y; Duan T; Wang Y; Ling H; Leifer K; Curry R; Song A
    ACS Appl Mater Interfaces; 2021 Nov; 13(44):52892-52900. PubMed ID: 34719923
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Narrow graphene nanoribbons from carbon nanotubes.
    Jiao L; Zhang L; Wang X; Diankov G; Dai H
    Nature; 2009 Apr; 458(7240):877-80. PubMed ID: 19370031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the unzipping of multiwalled carbon nanotubes.
    dos Santos RP; Perim E; Autreto PA; Brunetto G; Galvão DS
    Nanotechnology; 2012 Nov; 23(46):465702. PubMed ID: 23093108
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A guide to the design of electronic properties of graphene nanoribbons.
    Yazyev OV
    Acc Chem Res; 2013 Oct; 46(10):2319-28. PubMed ID: 23282074
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graphene nanoribbon devices produced by oxidative unzipping of carbon nanotubes.
    Sinitskii A; Dimiev A; Kosynkin DV; Tour JM
    ACS Nano; 2010 Sep; 4(9):5405-13. PubMed ID: 20812742
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitrogen-doped graphene nanoribbons as efficient metal-free electrocatalysts for oxygen reduction.
    Liu M; Song Y; He S; Tjiu WW; Pan J; Xia YY; Liu T
    ACS Appl Mater Interfaces; 2014 Mar; 6(6):4214-22. PubMed ID: 24559423
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidative unzipping of stacked nitrogen-doped carbon nanotube cups.
    Dong H; Zhao Y; Tang Y; Burkert SC; Star A
    ACS Appl Mater Interfaces; 2015 May; 7(20):10734-41. PubMed ID: 25946723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Boron/nitrogen co-doped helically unzipped multiwalled carbon nanotubes as efficient electrocatalyst for oxygen reduction.
    Zehtab Yazdi A; Fei H; Ye R; Wang G; Tour J; Sundararaj U
    ACS Appl Mater Interfaces; 2015 Apr; 7(14):7786-94. PubMed ID: 25793636
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemical unzipping of multi-walled carbon nanotubes for facile synthesis of high-quality graphene nanoribbons.
    Shinde DB; Debgupta J; Kushwaha A; Aslam M; Pillai VK
    J Am Chem Soc; 2011 Mar; 133(12):4168-71. PubMed ID: 21388198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unzipping carbon nanotubes into nanoribbons upon oxidation: a first-principles study.
    Li F; Kan E; Lu R; Xiao C; Deng K; Su H
    Nanoscale; 2012 Feb; 4(4):1254-7. PubMed ID: 22252198
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon nanoelectronics: unzipping tubes into graphene ribbons.
    Santos H; Chico L; Brey L
    Phys Rev Lett; 2009 Aug; 103(8):086801. PubMed ID: 19792746
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of ribbon width on electrical transport properties of graphene nanoribbons.
    Bang K; Chee SS; Kim K; Son M; Jang H; Lee BH; Baik KH; Myoung JM; Ham MH
    Nano Converg; 2018; 5(1):7. PubMed ID: 29577013
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atomically precise bottom-up fabrication of graphene nanoribbons.
    Cai J; Ruffieux P; Jaafar R; Bieri M; Braun T; Blankenburg S; Muoth M; Seitsonen AP; Saleh M; Feng X; Müllen K; Fasel R
    Nature; 2010 Jul; 466(7305):470-3. PubMed ID: 20651687
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clean nanotube unzipping by abrupt thermal expansion of molecular nitrogen: graphene nanoribbons with atomically smooth edges.
    Morelos-Gómez A; Vega-Díaz SM; González VJ; Tristán-López F; Cruz-Silva R; Fujisawa K; Muramatsu H; Hayashi T; Mi X; Shi Y; Sakamoto H; Khoerunnisa F; Kaneko K; Sumpter BG; Kim YA; Meunier V; Endo M; Muñoz-Sandoval E; Terrones M
    ACS Nano; 2012 Mar; 6(3):2261-72. PubMed ID: 22360783
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.