BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 31544452)

  • 21. Size, structure, and helical twist of graphene nanoribbons controlled by confinement in carbon nanotubes.
    Chamberlain TW; Biskupek J; Rance GA; Chuvilin A; Alexander TJ; Bichoutskaia E; Kaiser U; Khlobystov AN
    ACS Nano; 2012 May; 6(5):3943-53. PubMed ID: 22483078
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nitrogen-Doping Induced Self-Assembly of Graphene Nanoribbon-Based Two-Dimensional and Three-Dimensional Metamaterials.
    Vo TH; Perera UG; Shekhirev M; Mehdi Pour M; Kunkel DA; Lu H; Gruverman A; Sutter E; Cotlet M; Nykypanchuk D; Zahl P; Enders A; Sinitskii A; Sutter P
    Nano Lett; 2015 Sep; 15(9):5770-7. PubMed ID: 26258628
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Anisotropic conductive films based on highly aligned polyimide fibers containing hybrid materials of graphene nanoribbons and carbon nanotubes.
    Liu M; Du Y; Miao YE; Ding Q; He S; Tjiu WW; Pan J; Liu T
    Nanoscale; 2015 Jan; 7(3):1037-46. PubMed ID: 25474256
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sharpening the chemical scissors to unzip carbon nanotubes: crystalline graphene nanoribbons.
    Terrones M
    ACS Nano; 2010 Apr; 4(4):1775-81. PubMed ID: 20420468
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Graphene nanoribbons from unzipped carbon nanotubes: atomic structures, Raman spectroscopy, and electrical properties.
    Xie L; Wang H; Jin C; Wang X; Jiao L; Suenaga K; Dai H
    J Am Chem Soc; 2011 Jul; 133(27):10394-7. PubMed ID: 21678963
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Secondary-Heteroatom-Doping-Derived Synthesis of N, S Co-Doped Graphene Nanoribbons for Enhanced Oxygen Reduction Activity.
    Li B; Xiang T; Shao Y; Lv F; Cheng C; Zhang J; Zhu Q; Zhang Y; Yang J
    Nanomaterials (Basel); 2022 Sep; 12(19):. PubMed ID: 36234434
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Recent progress and challenges in graphene nanoribbon synthesis.
    Ma L; Wang J; Ding F
    Chemphyschem; 2013 Jan; 14(1):47-54. PubMed ID: 22615215
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electronic property modification of single-walled carbon nanotubes by encapsulation of sulfur-terminated graphene nanoribbons.
    Pollack A; Alnemrat S; Chamberlain TW; Khlobystov AN; Hooper JP; Osswald S
    Small; 2014 Dec; 10(24):5077-86. PubMed ID: 25123503
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hierarchical composites of polyaniline-graphene nanoribbons-carbon nanotubes as electrode materials in all-solid-state supercapacitors.
    Liu M; Miao YE; Zhang C; Tjiu WW; Yang Z; Peng H; Liu T
    Nanoscale; 2013 Aug; 5(16):7312-20. PubMed ID: 23821299
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Selective etching of graphene edges by hydrogen plasma.
    Xie L; Jiao L; Dai H
    J Am Chem Soc; 2010 Oct; 132(42):14751-3. PubMed ID: 20923144
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons.
    Kosynkin DV; Higginbotham AL; Sinitskii A; Lomeda JR; Dimiev A; Price BK; Tour JM
    Nature; 2009 Apr; 458(7240):872-6. PubMed ID: 19370030
    [TBL] [Abstract][Full Text] [Related]  

  • 32. One-step oxidation preparation of unfolded and good soluble graphene nanoribbons by longitudinal unzipping of carbon nanotubes.
    Hu X; Hu Y; Huang J; Zhou N; Liu Y; Wei L; Chen X; Zhuang N
    Nanotechnology; 2018 Apr; 29(14):145705. PubMed ID: 29384729
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Unravelling the Role of Topological Defects on Catalytic Unzipping of Single-Walled Carbon Nanotubes by Single Transition Metal Atom.
    Ma L; Zeng XC
    J Phys Chem Lett; 2018 Dec; 9(23):6801-6807. PubMed ID: 30423244
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Site-Specific Substitutional Boron Doping of Semiconducting Armchair Graphene Nanoribbons.
    Cloke RR; Marangoni T; Nguyen GD; Joshi T; Rizzo DJ; Bronner C; Cao T; Louie SG; Crommie MF; Fischer FR
    J Am Chem Soc; 2015 Jul; 137(28):8872-5. PubMed ID: 26153349
    [TBL] [Abstract][Full Text] [Related]  

  • 35. One-step synthesis of graphene nanoribbon-MnO₂ hybrids and their all-solid-state asymmetric supercapacitors.
    Liu M; Tjiu WW; Pan J; Zhang C; Gao W; Liu T
    Nanoscale; 2014 Apr; 6(8):4233-42. PubMed ID: 24608664
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multifunctional nitrogen-doped graphene nanoribbon aerogels for superior lithium storage and cell culture.
    Liu Y; Wang X; Wan W; Li L; Dong Y; Zhao Z; Qiu J
    Nanoscale; 2016 Jan; 8(4):2159-67. PubMed ID: 26730571
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sequential electrochemical unzipping of single-walled carbon nanotubes to graphene ribbons revealed by in situ Raman spectroscopy and imaging.
    John R; Shinde DB; Liu L; Ding F; Xu Z; Vijayan C; Pillai VK; Pradeep T
    ACS Nano; 2014 Jan; 8(1):234-42. PubMed ID: 24308315
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Patterning, characterization, and chemical sensing applications of graphene nanoribbon arrays down to 5 nm using helium ion beam lithography.
    Abbas AN; Liu G; Liu B; Zhang L; Liu H; Ohlberg D; Wu W; Zhou C
    ACS Nano; 2014 Feb; 8(2):1538-46. PubMed ID: 24467172
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Graphene Nanoribbon/Carbon Nanotube Hybrid Hydrogel: Rheology and Membrane for Ultrafast Molecular Diafiltration.
    Kim JY; Choi Y; Choi J; Kim YJ; Kang J; Kim JP; Kim JH; Kwon O; Kim SS; Kim DW
    ACS Appl Mater Interfaces; 2022 Mar; 14(9):11779-11788. PubMed ID: 35192336
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Intercalation-assisted longitudinal unzipping of carbon nanotubes for green and scalable synthesis of graphene nanoribbons.
    Li YS; Liao JL; Wang SY; Chiang WH
    Sci Rep; 2016 Mar; 6():22755. PubMed ID: 26948486
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.